$A(VO_2F)(SeO_3)$ (A = Sr, Ba) and Ba(MOF₂)(TeO₄) (M = Mo, W): First Examples of Akali-earth Selenites/Tellurites with Fluorinated d⁰-TM Octahedron

Ming-Li Liang^{a,b}, Yun-Xiang Ma^{a,b}, Chun-Li Hu^a, Fang Kong^{*,a}, Jiang-Gao Mao^{*,a} ^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. ^b College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.

Supporting Information

Table S1. Selected Bond Distances (Angstroms) for the four title compounds.

Table S2. Important Angles (deg) for the four title compounds.

Table S3. The state energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB) of the title compounds.

Fig. S1. Simulated and experimental XRD powder patterns of **1** (a), **2** (b), **3** (c) and **4** (d).

Fig. S2. TG-MS curves of compounds 3 (a) and 4 (b).

Fig. S3. IR spectra of the compounds **1** (a), **2** (b), **3** (c), **4** (d).

Fig. S4. UV-Vis-NIR spectra of the compounds 1 (a), 2 (b), 3 (c), 4 (d).

$Sr(VO_2F)(SeO_3)$						
Sr(1)-F(1)	2.454(2)	V(1)-O(4)	1.667(3)			
Sr(1)-F(1)#1	2.480(2)	V(1)-O(2)#3	1.968(3)			
Sr(1)-O(1)#2	2.582(3)	V(1)-O(3)#7	1.969(3)			
Sr(1)-O(1)#3	2.587(3)	V(1)-F(1)	2.034(2)			
Sr(1)-O(3)	2.594(3)	V(1)-O(4)#4	2.304(3)			
Sr(1)-O(4)#4	2.611(3)	Se(1)-O(1)	1.651(3)			
Sr(1)-O(2)#5	2.673(3)	Se(1)-O(3)	1.736(3)			
Sr(1)-O(5)#6	2.686(3)	Se(1)-O(2)	1.747(3)			
V(1)-O(5)	1.618(3)					
	Ba(VO ₂ F)(SeO ₃)					
Ba(1)-F(1)	2.614(2)	V(1)-O(2)	1.664(3)			
Ba(1)-F(1)#1	2.673(2)	V(1)-O(3)	1.976(3)			
Ba(1)-O(1)#2	2.738(3)	V(1)-O(5)#5	1.972(3)			
Ba(1)-O(1)	2.754(3)	V(1)-F(1)	2.025(2)			
Ba(1)-O(5)#3	2.772(3)	V(1)-O(2)#5	2.304(3)			
Ba(1)-O(3)#4	2.790(3)	Se(1)-O(1)	1.648(3)			
Ba(1)-O(2)#5	2.795(3)	Se(1)-O(5)	1.734(3)			
Ba(1)-O(4)#6	2.840(3)	Se(1)-O(3)	1.740(3)			
V(1)-O(4)	1.623(3)					
Ba(MoOF ₂)(TeO ₄)						
Mo(1)-O(5)	1.719(5)	Mo(1)-F(2)	2.163(3)			
Mo(1)-O(4)	1.727(4)	Te(1)-O(3)	1.889(4)			
Mo(1)-O(2)	1.875(4)	Te(1)-O(1)	1.921(4)			
Mo(1)-O(3)	2.013(4)	Te(1)-O(1)#1	2.061(4)			
Mo(1)-F(1)	2.098(4)	Te(1)-O(2)#2	2.062(4)			
$Ba(WOF_2)(TeO_4)$						
W(1)-O(5)	1.752(6)	W(1)-F(2)	2.113(5)			
W(1)-O(4)	1.751(6)	Te(1)-O(3)	1.907(6)			
W(1)-O(1)	1.876(6)	Te(1)-O(2)	1.919(6)			
W(1)-O(3)#1	1.985(6)	Te(1)-O(1)	2.053(6)			
W(1)-F(1)	2.076(5)	Te(1)-O(2)#2	2.061(6)			

Table S1. Selected Bond Distances (Angstroms) for the four title compounds.

Symmetry transformations used to generate equivalent atoms:

For compound 1: #1 -x+1/2, y+1/2, z; #2 -x, -y, -z+1; #3 x+1/2, -y+1/2, -z+1; #4 -x+1, -y, -z+1; #5 x,-y+1/2,z+1/2; #6 -x+1,y+1/2,-z+3/2; #7 -x+1/2, y-1/2, z. For compound 2: #1 -x+3/2, y+1/2, z; #2 -x+3/2, y-1/2, z; #3 x+1/2, -y+1/2, -z+1; #4 x+1/2, y, -z+1/2; #5 -x+1, -y, -z+1; #6 - x+1, y+1/2, -z+1/2. For compound 3: #1 -x-1, -y+1, -z-1; #2 x, -y+1/2, z-1/2. For compound 4: #1 x, -y-1/2, z-1/2; #2 -x-1, -y, -z-1.

$Sr(VO_2F)(SeO_3)$ (1)						
O(1)-Se(1)-O(3)	103.24(13)	O(5)-V(1)-F(1)	95.41(12)			
O(1)-Se(1)-O(2)	100.75(13)	O(4)-V(1)-F(1)	158.72(11)			
O(3)-Se(1)-O(2)	102.69(13)	O(2)#1-V(1)-F(1)	82.26(10)			
O(5)-V(1)-O(4)	105.73(13)	O(3)#3-V(1)-F(1)	80.35(10)			
O(5)-V(1)-O(2)#1	99.61(14)	O(5)-V(1)-O(4)#2	171.46(12)			
O(4)-V(1)-O(2)#1	96.28(13)	O(4)-V(1)-O(4)#2	82.76(11)			
O(5)-V(1)-O(3)#3	100.56(13)	O(2)#1-V(1)-O(4)#2	79.98(11)			
O(4)-V(1)-O(3)#3	93.21(12)	O(3)#3-V(1)-O(4)#2	77.74(11)			
O(2)#1-V(1)-O(3)#3	154.43(11)	F(1)-V(1)-O(4)#2	76.07(9)			
	Ba(VO ₂ F)	$(SeO_3)(2)$				
O(1)-Se(1)-O(5)	103.05(15)	O(4)-V(1)-F(1)	94.55(14)			
O(1)-Se(1)-O(3)	101.04(14)	O(2)-V(1)-F(1)	160.56(12)			
O(5)-Se(1)-O(3)	102.90(14)	O(3)-V(1)-F(1)	82.15(11)			
O(4)-V(1)-O(2)	104.86(15)	O(5)#1-V(1)-F(1)	80.30(11)			
O(4)-V(1)-O(3)	98.27(14)	O(4)-V(1)-O(2)#1	172.25(14)			
O(2)-V(1)-O(3)	95.99(13)	O(2)-V(1)-O(2)#1	82.59(12)			
O(4)-V(1)-O(5)#1	102.98(13)	O(3)-V(1)-O(2)#1	78.52(11)			
O(2)-V(1)-O(5)#1	93.96(13)	O(5)#1-V(1)-O(2)#1	78.33(10)			
O(3)-V(1)-O(5)#1	153.34(12)	F(1)-V(1)-O(2)#1	78.07(10)			
	Ba(MoOF ₂)(TeO ₄) (3)				
O(3)-Te(1)-O(1)	97.0(2)	O(2)-Mo(1)-O(3)	156.86(18)			
O(3)-Te(1)-O(1)#1	91.82(18)	O(5)-Mo(1)-F(1)	161.88(19)			
O(1)-Te(1)-O(1)#1	76.5(2)	O(4)-Mo(1)-F(1)	93.7(2)			
O(3)-Te(1)-O(2)#2	86.42(18)	O(2)-Mo(1)-F(1)	82.34(17)			
O(1)-Te(1)-O(2)#2	79.62(18)	O(3)-Mo(1)-F(1)	79.67(18)			
O(1)#1-Te(1)-O(2)#2	155.67(18)	O(5)-Mo(1)-F(2)	89.08(18)			
O(5)-Mo(1)-O(4)	104.4(2)	O(4)-Mo(1)-F(2)	166.1(2)			
O(5)-Mo(1)-O(2)	96.4(2)	O(2)-Mo(1)-F(2)	83.43(16)			
O(4)-Mo(1)-O(2)	98.1(2)	O(3)-Mo(1)-F(2)	77.45(15)			
O(5)-Mo(1)-O(3)	96.2(2)	F(1)-Mo(1)-F(2)	72.81(15)			
O(4)-Mo(1)-O(3)	97.48(19)					
$Ba(WOF_2)(TeO_4) (4)$						
O(5)-W(1)-O(4)	103.5(3)	O(3)#1-W(1)-F(2)	78.8(2)			
O(5)-W(1)-O(1)	97.2(3)	F(1)-W(1)-F(2)	73.3(2)			
O(4)-W(1)-O(1)	95.1(3)	O(3)-Te(1)-O(2)	93.8(3)			
O(5)-W(1)-O(3)#1	97.4(3)	O(3)-Te(1)-O(1)	86.4(3)			
O(4)-W(1)-O(3)#1	96.8(3)	O(2)-Te(1)-O(1)	79.8(2)			
O(1)-W(1)-O(3)#1	158.5(2)	O(3)-Te(1)-O(2)#2	91.2(3)			
O(5)-W(1)-F(1)	94.1(3)	O(2)-Te(1)-O(2)#2	76.4(3)			
O(4)-W(1)-F(1)	162.3(2)	O(1)-Te(1)-O(2)#2	155.9(2)			
O(1)-W(1)-F(1)	82.8(2)	O(3)-Te(1)-O(5)#3	169.8(2)			

Table S2. Important Angles (deg) for the four title compounds.

O(3)#1-W(1)-F(1)	80.4(2)	O(2)-Te(1)-O(5)#3	75.9(2)
O(5)-W(1)-F(2)	167.3(3)	O(1)-Te(1)-O(5)#3	92.2(2)
O(4)-W(1)-F(2)	89.0(2)	O(2)#2-Te(1)-O(5)#3	85.9(2)
O(1)-W(1)-F(2)	83.6(2)		

Symmetry transformations used to generate equivalent atoms:

For compound **1**: #1 x+1/2, -y+1/2, -z+1; #2 -x+1, -y, -z+1; #3 -x+1/2, y-1/2, z. For compound **2**: #1 -x+1, -y, -z+1. For compound **3**: #1 -x-1, -y+1, -z-1; #2 x, -y+1/2, z-1/2. For compound **4**: #1 x, -y-1/2, z-1/2; #2 -x-1,-y,-z-1; #3 -x-1, y+1/2, -z-3/2.

Table S3 The state energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB) of the title compounds.

Compounds	k-points	L-CB	H-VB
Sr(VO ₂ F)(SeO ₃) (1)	G (0.000, 0.000, 0.000)	3.073	0
	Z (0.000, 0.000, 0.500)	3.08514	-0.09702
	T (-0.500, 0.000, 0.500)	3.08313	-0.16035
	Y (-0.500, 0.000, 0.000)	3.07029	-0.10658
	S (-0.500, 0.500, 0.000)	3.09084	-0.13886
	X (0.000, 0.500, 0.000)	3.08828	-0.12085
	U (0.000, 0.500, 0.500)	3.09931	-0.16228
	R (-0.500, 0.500, 0.500)	3.09778	-0.14311
	G (0.000, 0.000, 0.000)	3.10498	0
	Z (0.000, 0.000, 0.500)	3.10644	-0.10159
	T (-0.500, 0.000, 0.500)	3.11237	-0.14268
$\mathbf{P}_{\mathbf{a}}(\mathbf{VO} \mathbf{E})(\mathbf{S}_{\mathbf{a}}\mathbf{O})$	Y (-0.500, 0.000, 0.000)	3.10684	-0.08654
$Ba(VO_2\Gamma)(SeO_3)(2)$	S (-0.500, 0.500, 0.000)	3.13214	-0.1043
	X (0.000, 0.500, 0.000)	3.12692	-0.06054
	U (0.000, 0.500, 0.500)	3.13298	-0.11497
	R (-0.500, 0.500, 0.500)	3.13455	-0.11531
	Z (0.000, 0.000, 0.500)	2.75698	-0.24301
	G (0.000, 0.000, 0.000)	2.64406	-0.17483
	Y (0.000, 0.500, 0.000)	2.70762	-0.22726
	A (-0.500, 0.500, 0.000)	2.65014	-0.17646
$Ba(MOOF_2)(1eO_4)(3)$	B (-0.500, 0.000, 0.000)	2.5737	0
	D (-0.500, 0.000, 0.500)	2.73358	-0.21463
	E (-0.500, 0.500, 0.500)	2.68771	-0.21222
	C (0.000, 0.500, 0.500)	2.76725	-0.26559
	Z (0.000, 0.000, 0.500)	3.37492	-0.2273
	G (0.000, 0.000, 0.000)	3.29843	-0.16247
	Y (0.000, 0.500, 0.000)	3.38066	-0.20375
	A (-0.500, 0.500, 0.000)	3.32165	-0.14864
$Ba(WOF_2)(TeO_4)$ (4)	B (-0.500, 0.000, 0.000)	3.23902	0
	D (-0.500, 0.000, 0.500)	3.37873	-0.20979
	E (-0.500, 0.500, 0.500)	3.33768	-0.21114
	C (0.000, 0.500, 0.500)	3.43487	-0.24488

Fig. S1 Simulated and experimental XRD powder patterns of **1** (a), **2** (b), **3** (c) and **4** (d).

Fig. S2. TG-MS curves of compounds $\mathbf{3}$ (a) and $\mathbf{4}$ (b).

Fig. S3. IR spectra of compounds 1 (a), 2 (b), 3 (c) and 4 (d).

Fig. S4. UV-Vis-NIR spectra of compounds 1 (a), 2 (b), 3 (c) and 4 (d).