Electronic Supporting Information (ESI)

Tuning the Redox Profiles of Polyoxovanadate-alkoxide Clusters via Heterometal Installation: Toward Designer Redox Reagents

Lauren E. VanGelder[†], William W. Brennessel[†], and Ellen M. Matson*[†] [†]Department of Chemistry, University of Rochester, Rochester, New York 14627 Corresponding author email: matson@chem.rochester.edu

Supporting Information Table of Contents:

General Considerations	S3
Group(IV) POV-alkoxide Synthesis	S4
Table S1. Crystallographic parameters for 4-V ₅ TiOCH ₃ , 5-V ₅ ZrOCH ₃ and 6-V ₅ HfOCH ₃ .	S5
Figure S1. ESI-MS and 1H NMR of synthetic efforts to access 3-V ₅ TiCl in MeOH	S6
Figure S2. ESI-MS and 1H NMR of synthetic efforts to access $3-V_5TiCl$ in Toluene	S7
Figure S3. ESI-MS and 1H NMR of synthetic efforts to access 3-V ₅ TiCl in MeCN	S7
Figure S4. ESI-MS and 1H NMR of synthetic efforts to access 3-V ₅ TiCl in Toluene with [NBu ₄][BH ₄]	
Figure S5. ESI-MS and 1H NMR of synthetic efforts to access 3-V ₅ TiCl in MeCN with [NBu ₄][BH ₄]	S8
Figure S6. ESI-MS of 4-V5TiOCH3	S9
Figure S7. 1H NMR of 1-V ₆ O ₇ and 4-V ₅ TiOCH ₃	S9
Figure S8. Full cyclic voltammogram of 4-V5TiOCH3	S10
Figure S9. ESI-MS of 5-V ₅ ZrOCH ₃	S10
Figure S10. ESI-MS of 6-V5HfOCH3	S11
Figure S11. 1H NMR of 4-V5TiOCH3, 5-V5ZrOCH3 and 6-V5HfOCH3	S11
Figure S12. Solutions of 4-V ₅ TiOCH ₃ , 5-V ₅ ZrOCH ₃ and 6-V ₅ HfOCH ₃	S12
Figure S13. Molecular structure of 6-V ₅ HfOCH ₃	S12
Table S2. Structural parameters of 6-V5HfOCH3.	S12
References	S12

Experimental Details

General Considerations.

All manipulations were carried out in the absence of water and oxygen in a UniLab MBraun inert atmosphere glovebox under a dinitrogen atmosphere. Glassware was oven dried for a minimum of 4 hrs and cooled in an evacuated antechamber prior to use in the drybox. Anhydrous methanol was purchased from Sigma-Aldrich and stored over activated 4 Å molecular sieves purchased from Fisher Scientific. All other solvents were dried and deoxygenated on a Glass Contour System (Pure Process Technology, LLC) and stored over activated 3 Å molecular sieves purchased from Fisher Scientific. Ti(OCH₃)₄, Zr(O^tBu)₄, Hf(O^tBu)₄, and ^tBuNBH₄ were purchased from Sigma-Aldrich and used as received. VO(OCH₃)₃ was synthesized according to literature precedent.¹ Complexes $1-V_6O_7$ and $2-V_5FeCIO_4$ were prepared according to literature procedures.^{2, 3}

¹H NMR spectra were recorded at 500 on Bruker DPX-500 spectrometer locked on the signal of deuterated solvents. All chemical shifts were reported relative to the peak of residual ¹H signal in deuterated solvents. CDCl₃ was purchased from Cambridge Isotope Laboratories, degassed by three freeze–pump–thaw cycles, and stored over activated 4 Å molecular sieves. Infrared (FT-IR, ATR) spectra of complexes were recorded on a Shimadzu IRAffinity-1 Fourier Transform Infrared Spectrophotometer and are reported in wavenumbers (cm⁻¹). Electronic absorption measurements were recorded at room temperature in anhydrous acetonitrile in a sealed 1 cm quartz cuvette with an Agilent Cary 60 UV-Vis spectrophotometer. Mass spectrometry analyses were performed on an Advion expression^L Compact Mass Spectrometer equipped with an electrospray probe operating in negative ion mode (–ve) with an ion-trap mass analyzer. Direct injection analysis was employed in all cases with a sample solution in acetonitrile. Single crystals were mounted on the tip of a thin glass optical fiber (goniometer head) and mounted on a Bruker SMART APEX II CCD platform diffractometer for a data collection at 100.0(5) K. The structures were solved using SHELXT-2014/5⁴ and refined using SHELXL-2014/7.⁵ Elemental analyses were performed on a PerkinElmer 2400 Series II Analyzer, at the CENTC Elemental Analysis Facility, University of Rochester.

Cyclic Voltammograms were recorded with a CH Instruments Inc. 410c time-resolved electrochemical quartz crystal microbalance. All measurements were performed in a three electrode system cell configuration that consisted of a glassy-carbon ($\emptyset = 3.0 \text{ mm}$) as working electrode, a Pt wire as the counter electrode, and an Ag/AgCl wire as the reference electrode. All electrochemical measurements were performed at room temperature in a N₂-filled glovebox. A 0.1 M ^{*n*}Bu₄NPF₆ solution in dry acetonitrile was used as the electrolyte solution. All redox events were referenced against ferrocenium/ferrocene (Fc⁺/Fc) redox couple.

Group IV POV-alkoxide Syntheses:

Synthesis of $[Bu_4N]$ [(VO)₅O(OCH₃)₁₂TiOCH₃] (4-V₅TiOCH₃):

In a glovebox, VO(OCH₃)₃ (0.450 g, 2.812 mmol) and 10 mL MeOH were charged in a 25 mL Teflon-lined Parr reactor. [Bu₄N][BH₄] (0.146 g, 0.568 mmol) in 4 mL MeOH was added to the solution. This mixture immediately turned dark green as gas evolved. Ti(OCH₃)₄ (0.098 g, 0.570 mmol) was added as a solid to the reaction mixture. The Parr reactor was sealed, and the mixture heated in an oven at 100 °C for 48 hours. The Parr reactor was allowed to cool to room temperature, then returned to the glove box. A brown solution resulted, and the solvent was removed under vacuum to give a red-brown solid. This solid was washed with toluene (10 mL, 3x), and any volatiles were removed under vacuum to yield **4-V₅TiOCH₃** as a brown solid (0.493 g, 0.472 mmol, 84%). X-ray quality crystals were grown by making a supersaturated solution of the product in hot MeOH, filtering the solution, and cooling to -30 °C for 24 hours. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.03$, 1.36, 3.14, 3.90, 13.16, 25.02 ppm. Elemental analysis Calcd (%) (MW = 1044.48): C, 33.35; H, 7.24; N, 1.34. Found: C, 33.18; H, 6.99; N, 1.31 %.

Synthesis of $[Bu_4N]$ [(VO)₅O(OCH₃)₁₂ZrOCH₃] (**5**-V₅ZrOCH₃):

In a glovebox, VO(OCH₃)₃ (0.450 g, 2.812 mmol) and 10 mL MeOH were charged in a 50 mL Teflon-lined Parr reactor. [Bu₄N][BH₄] (0.146 g, 0.568 mmol) in 4 mL MeOH was added to the solution. This mixture immediately turned dark green as gas evolved. Zr(O^tBu)₄ (0.222 mL, 0.570 mmol) was added to the reaction mixture. The Parr reactor was sealed, and the mixture heated in an oven at 100 °C for 48 hours. The Parr reactor was allowed to cool to room temperature, then returned to the glove box. A blue-green solution resulted, which was concentrated to half of its original volume and cooled to -30 °C for 24 hours. Blue-green crystals of **5-V₅ZrOCH₃** (0.293 g, 0.270 mmol, 48%) formed directly from this solution. These crystals were used for X-ray analysis. ¹H NMR (400 MHz, CDCl₃) δ = 1.01, 1.35, 3.20, 3.95, 13.50, 25.56 ppm. Elemental analysis Calcd (%) (MW = 1087.83): C, 32.02; H, 6.95; N, 1.29 %. Found: C, 31.73; H, 6.76; N, 1.18 %.

Synthesis of $[Bu_4N]$ [(VO)₅O(OCH₃)₁₂HfOCH₃] (**6-V**₅HfOCH₃)

In a glovebox, VO(OCH₃)₃ (0.450 g, 2.812 mmol) and 10 mL MeOH were charged in a 50 mL Teflon-lined Parr reactor. [Bu₄N][BH₄] (0.146 g, 0.568 mmol) in 4 mL MeOH was added to the solution. This mixture immediately turned dark green as gas evolved. Hf(O^tBu)₄ (0.230 mL, 0.570 mmol) was added to the reaction mixture. The Parr reactor was sealed, and the mixture heated in an oven at 100 °C for 48 hours. The Parr reactor was allowed to cool to room temperature, then returned to the glove box. A blue-green solution resulted, which was concentrated to half of its original volume and cooled to -30 °C for 24 hours. Blue-green crystals of **6-V₅HfOCH₃** (0.237 g, 0.202 mmol, 36%) formed directly from this solution. These crystals were used for X-ray analysis. ¹H NMR (400 MHz, CDCl₃) δ = 1.00, 1.39, 3.24, 3.99, 13.90, 26.06 ppm. Elemental analysis Calcd (%) (MW = 1175.10): C, 29.64; H, 6.43; N, 1.19. Found: C, 29.81; H, 6.57; N, 1.21 %

Compound	4-V5TiOCH3 CCDC 1587541	5-V ₅ ZrOCH ₃ CCDC 1587540	6-V ₅ HfOCH ₃ CCDC 1587539
Empirical formula	$C_{29}H_{75}O_{19}V_5Ti$	$C_{29}H_{75}O_{19}V_5Zr$	$C_{29}H_{75}O_{19}V_5Hf$
Formula weight	1044.50	1087.82	1075.09
Temperature / K	100.0(5)	100.0(5)	100.0(5)
Wavelength / Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Orthorhombic	Orthorhombic
Space group	<i>P2</i> _{1/c}	Pna2 ₁	$Pna2_1$
Unit cell dimensions	<i>a</i> = 11.5947(17) Å	a = 21.402(2) Å	<i>a</i> = 21.282(6) Å
	<i>b</i> = 18.157(3) Å	b = 18.960(2) Å	<i>b</i> = 18.958(6) Å
	c = 23.178(3) Å	c = 11.5527(12) Å	c = 11.572(4) Å
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 103.2149(18)^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
Volume / Å ³	4750.3(12) Å ³	4687.9(8) Å ³	4669(2) Å ³
Ζ	4	4	4
Reflections collected	51687	134612	88214
Independent reflections	8626	15660	12086
Completeness (theta)	100.0% (25.242°)	100.0% (31.506°)	100.0% (28.700°)
Goodness-of-fit on F^2	1.009	1.020	1.044
Final R indices $[I>2sigma(I)]$	R1 = 0.0692	R1 = 0.0439	R1 = 0.0551
Largest diff. peak and hole	0.526 and -0.693 e.Å ⁻³	1.066 and -0.803 e.Å ⁻³	3.557 and -1.204 e.Å ⁻³

 $Table \ S1. \ Crystallographic parameters \ for \ molecular \ structures \ of \ 4-V_5 TiOCH_3, \ 5-V_5 ZrOCH_3 \ and \ 6-V_5 HfOCH_3$

Figure S3. ESI-MS (negative mode) and 1H NMR (CD₃CN) of synthetic efforts to access 3-V₅TiCl

1 TiCl₃(thf)₃ + 5 VO(OCH₃)₃ \longrightarrow MeCN

Figure S4. ESI-MS (negative mode) and 1H NMR (CD₃CN) of synthetic efforts to access 3-V₅TiCl in toluene with [NBu₄][BH₄]

Figure S5. ESI-MS (negative mode) and 1H NMR (CD₃CN) of synthetic efforts to access 3-V₅TiCl in MeCN with [NBu₄][BH₄]

Figure S7. ¹H NMR of 4-V₅TiOCH₃ vs. 1-V₆O₇ in CDCl₃

Figure S8. Full cyclic voltammogram of 1 mM **4-V**₅**TiOCH**₃ in acetonitrile with 0.1 M TBAPF₆ supporting electrolyte.

Figure S9. ESI-MS (negative mode) of 5-V₅ZrOCH₃

Figure S11. ¹H NMR of 4-V₅TiOCH₃, 5-V₅ZrOCH₃, and 6-V₅HfOCH₃ in CDCl₃.

Figure S12. Solutions of complexes **4-V**₅**TiOCH**₃, **5-V**₅**ZrOCH**₃, and **6-V**₅**HfOCH**₃ to demonstrate the color differences between 3d and 4d/5d heterometal functionalized POV-alkoxide clusters.

Figure S13. Molecular structure of **6-V**₅**HfOCH**₃ shown with 50% probability ellipsoids. Hydrogen atoms and tetrabutylammonium counter ion has been removed for clarity.

Table S2. Parameters of $6-V_5HfOCH_3$ and $1-V_6O_7^2$

na	-V ₅ HfOCH ₃	$1-V_6O_7$
1	25(6) Å	
C 1	7.8(3)°	
(avg) 2	90 Å	
2	47(5) Å	
2	03(6) Å	
(avg) 2	63 Å	2.305 Å
ivg) 1	04 Å	1.601 Å
(avg) 2 (avg) 2 (avg) 2 (avg) 2 (vg) 1	25(6) A 7.8(3)° 90 Å 47(5) Å 03(6) Å 63 Å 04 Å	 2.305 Å 1.601 Å

References:

- 1. C. Daniel and H. Hartl, *Journal of the American Chemical Society*, 2009, **131**, 5101-5114.
- 2. C. Daniel and H. Hartl, *Journal of the American Chemical Society*, 2005, **127**, 13978-13987.
- F. Li, S. H. Carpenter, R. F. Higgins, M. G. Hitt, W. W. Brennessel, M. G. Ferrier, S. K. Cary, J. S. Lezama-Pacheco, J. T. Wright, B. W. Stein, M. P. Shores, M. L. Neidig, S. A. Kozimor and E. M. Matson, *Inorganic Chemistry*, 2017, 56, 7065-7080.
- 4. G. M. Sheldrick, SHELXT-2014/5. University of Gotingen: Gotingen, Germany, 2014.
- 5. G. M. Sheldrick, *Acta Crystallographica Section C*, 2015, **71**, 3-8.