Electronic Supplementary Information (Dalton Transaction)

A Study on the Redox, Spectroscopic, and Photophysical Characteristics of a Series of Octahedral Hexamolybdenum(II) Clusters: [{Mo₆X₈}Y₆]²⁻ (X, Y = Cl, Br, or I)

Soichiro Akagi,[†] Sho Fujii,^{†,‡} and Noboru Kitamura^{†,‡,*}

[†] Department of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering and [‡]Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo,060-0810, Japan

Corresponding Author: Noboru Kitamura

E-mail: kitamura@sci.hokudai.ac.jp

Phone: +81-(0)11-706-2697, Fax: +81-(0)11-706-4630

Index

Characterizations of 1 - 9: ESI-MS and elemental analysis: S1

Table S1. Absorption maximum wavelengths and molar absorption coefficients of [{Mo₆X₈}Y₆]²⁻ in CH₃CN at 298 K: S2

Table S2. Photophysical properties of $[\{Mo_6X_8\}Y_6]^{2-}(X, Y = Cl, Br, or I)$ in deaerated crystalline phases at 298 K: S3

Figure S1. Emission decay profiles of 1 – 9 in deaerated CH₃CN at 298 K: S4

Figure S2. Emission decay profiles of 1 – 9 in deaerated crystalline phases at 298 K: S4

Characterizations of 1 – 9: ESI-MS (CH₃CN)

For $C_{32}H_{72}N_2Mo_6Cl_8Y_6$.

Y = Cl (1): m/z 535 (M–2TBA). Y = Br (2): m/z 669 (M–2TBA). Y = I (3): m/z 810 (M–2TBA).

For $C_{32}H_{72}N_2Mo_6Br_8Y_6$.

Y = Cl (4): m/z 713 (M–2TBA). Y = Br (5): m/z 847 (M–2TBA). Y = I (6): m/z 988 (M–2TBA).

For $C_{32}H_{72}N_2Mo_6I_8Y_6$.

Y = Cl (7): m/z 901(M–2TBA). Y = Br (8): m/z 1035 (M–2TBA). Y = I (9): m/z 1176 (M–2TBA).

Characterizations of 1 – 9: Elemental Analysis

Anal. Calcd for $C_{32}H_{72}N_2Mo_6Cl_8Y_6$.

Y = Cl (1): C, 24.69; H, 4.67; N, 1.80. Found: C, 25.05; H, 4.88; N, 1.20. Y = Br (2): C, 21.08; H, 3.99; N, 1.54. Found: C, 20.99; H, 3.66; N, 1.32. Y = I (3): C, 18.25; H, 3.45; N, 1.33. Found: C, 18.26; H, 3.55; N, 1.28.

Anal. Calcd for C₃₂H₇₂N₂Mo₆Br₈Y₆.

Y = Cl (**4**): C, 20.01; H, 3.80; N, 1.47. Found: C, 20.12; H, 3.63; N, 1.66. Y = Br (**5**): C, 17.64; H, 3.33; N, 1.29. Found: C, 17.42; H, 3.11; N, 1.18. Y = I (**6**): C, 15.62; H, 2.95; N, 1.14. Found: C, 15.66; H, 3.01; N, 1.22.

Anal. Calcd for $C_{32}H_{72}N_2Mo_6I_8Y_6$.

Y = Cl (7): C, 16.80; H, 3.17; N, 1.22. Found: C, 16.91; H, 3.19; N, 1.26. Y = Br (8): C, 15.04; H, 2.84; N, 1.10. Found: C, 15.22; H, 2.81; N, 0.99. Y = I (9): C, 13.55; H, 2.56; N, 0.99. Found: C, 13.42; H, 2.36; N, 0.91.

 $[{Mo_6Cl_8}Y_6]^{2-}$ X = Cl1 (Y = Cl)2(Y = Br)3(Y = I)209 (59.2), 224 (122.3), $\lambda_{a}\left(\varepsilon\right)/nm$ 222 (157.0), 241 (6.8), 242 (100.0), 292 (2.9), 241 (55.7), 280 (76.0), $(10^3 \text{ M}^{-1} \text{ cm}^{-1})$ 342 (2.3) 366 (2.3) 377 (5.9) $\widetilde{\nu}_a \ / \ 10^3 \ cm^{-1 \ a)}$ 29.2 27.3 26.5 $[{Mo_6Br_8}Y_6]^{2-}$ X = Br4(Y = Cl)5(Y = Br)**6** (Y = I) 221 (34.9), 251 (61.9), 221 (63.6), 233 (118.0), $\lambda_{a}\left(\varepsilon\right)/nm$ 233 (137.1), 292 (3.6), 302 (2.5), 333 (2.2), 259 (58.3), 289 (72.5), (10³ M⁻¹cm⁻¹) 335 (4.2), 386 (3.5) 388 (2.1) 326 (21.3), 397 (6.1)

Table S1. Absorption maximum wavelengths and molar absorption coefficients of $[{Mo_6X_8}Y_6]^{2-}$ in CH₃CN at 298 K.

X = I	$[{Mo_6I_8}Y_6]^{2-}$				
	7 (Y = Cl)	8 (Y = Br)	9 (Y = I)		
	207 (58.6), 229 (41.2),	214 (86.2), 224 (86.0),	212 (62.9), 224 (58.1),		
$\lambda_{\mathrm{a}}\left(arepsilon ight)$ / nm	255 (51.7), 286 (10.0),	267 (76.7), 325 (7.3),	245 (82.6), 282 (46.0),		
$(10^3 \text{ M}^{-1} \text{cm}^{-1})$	322 (6.6), 363 (3.6),	339 (8.4), 371 (4.7),	304 (39.0), 354 (17.2),		
	419 (3.3)	421 (5.1)	429 (6.1), 500 (3.1)		
\tilde{v}_a / 10 ³ cm ^{-1 a)}	23.9	23.8	20.0		

25.8

25.2

a) The energy of the lowest-wavelength absorption band.

25.9

 \tilde{v}_a / 10³ cm^{-1 a)}

				Х	
			Cl	Br	Ι
		CI	13.2	13.5	14.1
			(3830)	(4210)	(2320)
			[758]	[742]	[707]
$\widetilde{v}_{em}/~10^3~cm^{-1}$		Br	12.9	12.9	14.0
$(fwhm / cm^{-1})$	Y		(4040)	(4030)	(2850)
$[\lambda_{\rm em}/\rm nm]$			[778]	[773]	[713]
		Ι	12.3	12.3	13.6
			(3820)	(3840)	(4530)
			[810]	[812]	[735]
		Cl	0.20	0.21	0.57
$arPsi_{ m em}$	Y	Br	0.17	0.15	0.24
		Ι	0.08	0.10	0.13
		I	130	115	170
$ au_{ m em}$ / $\mu m s$	Y	Br	105	85	130
		Ι	55	50	50
		CI	1.5	1.8	3.4
$k_{\rm r}$ / 10 ³ cm ⁻¹	Y	Br	1.6	1.8	1.9
		Ι	1.5	2.0	2.6
		CI	6.2	6.9	2.4
$k_{\rm nr}$ / 10 ³ cm ⁻¹	Y	Br	7.9	10	5.9
		Ι	17	18	17

Table S2. Photophysical properties of $[\{Mo_6X_8\}Y_6]^{2-}$ (X, Y = Cl, Br, or I) in deaerated
crystalline phases at 298 K.

Figure S1. Emission decay profiles of 1 - 9 in deaerated CH₃CN at 298 K.

Figure S2. Emission decay profiles of 1 - 9 in deaerated crystalline phases at 298 K.