Formation of Fe₃O₄@C/Ni microtubes for efficient catalysis and protein adsorption

Jianping Wang^a, Min Zhang^{a*}, Jingli Xu^a, Jing Zheng^{a*}, Tasawar Hayat^b, Njud S. Alharbi^c

^{a.} College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China. E-mail: <u>zhangmin@sues.edu.cn kkzhengjing707@163.com</u>.

^{b.} Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan NAAM Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.

^c Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

Figure S1. X-Ray diffraction patterns of MoO₃.

Figure S2. XPS spectra of Fe₃O₄@C/Ni microtubes (b): (A) N1s, (B) Fe 2p_{3/2}.

Figure S3. XRD patterns of Fe₃O₄@C/Ni microtubes (a: 350°C, b: 700°C).

Figure S4. Nitrogen adsorption-desorption isotherms of Fe₃O₄@C/Ni-350 (A) and Fe₃O₄@C/Ni-700 (B).

Table. S1 BET data of different samples from Nitrogen adsorption-desorption isotherms.

Samples	Special Surface (m ² /g)	Pore Size (nm)	Pore Volume (cm ³ /g)
Fe ₃ O ₄ @C/Ni-500	77.05	10.9	0.17
Fe ₃ O ₄ @C/Ni-350	49.9	9.6	0.114
Fe ₃ O ₄ @C/Ni-700	30.8	8.6	0.0728

Figure S5. SEM(a), TEM images(b) and XRD(c) of FeOOH@SiO₂ adding 50 µL TEOS.

Figure S6. UV-vis spectra of Fe₃O₄@C/Ni-350 (A) and Fe₃O₄@C/Ni-700 (C) catalyzed 4-NP to 4-AP developed at different reaction times and corresponding C/C₀ and $\ln(C/C_0)$ versus time for the reduction of 4-NP over 1.0 mg catalysts

Figure S7. SEM image of Fe₃O₄@C/Ni-500 after reducing 4-NP for five times.

Figure S8. Linear fitting of adsorption isotherms plots based on Freundlich model.

Figure S9. Curve a is the UV-vis spectrum of $0.4 \text{ mg} \cdot \text{mL}^{-1}$ of the BSA solution before adsorption by Fe₃O₄@C/Ni. Curve b is the UV-vis spectrum of supernatant of BSA after adsorbed by Fe₃O₄@C/Ni. Curve c is the UV-vis spectrum of desorption solution of the adsorbed protein by Fe₃O₄@C/Ni in BSA solution using concentration of $0.2 \text{ g} \cdot \text{mL}^{-1}$ of 2-methylimidazole solution as the eluent.

Catalytic activity of Fe₃O₄@C/Ni-500

Typically, 10 mg NaBH₄ was mixed with the freshly prepared 4-nitrophenol aqueous solution (0.1 mM, 5 mL). Afterwards, the as-prepared $Fe_3O_4@C/Ni-500$ nanocatalysts (1 mg) were added into the reaction mixture. The reaction process was monitored by UV–vis spectroscopy.