Supporting information for:

One-Pot Halide and Silver-Free Synthesis of Echavarren's Catalyst

Mohammad Albayer,^a Robert Corbo,^a Anthony F. Hill^b and Jason L. Dutton^{a*}

^a Department of Chemistry and Physics, La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia.

^bResearch School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.

*Corresponding author: Email: j.dutton@latrobe.edu.au

Experimental

All manipulations were carried out under an atmosphere of dry dinitrogen or argon using standard Schlenk and vacuum line or dry-box techniques. Acetonitrile was dried by distillation under nitrogen from calcium hydride. Gold powder (1.3-2.5 mm) was obtained from Precious Metals Online and [NO]BF4 was obtained from Sigma-Aldrich. All remaining reagents were ordered from Sigma-Aldrich and used as received. ¹H, ¹³C and ³¹P{1H} NMR spectra were obtained using a Bruker spectrometer. Best results were obtained by protecting the reaction vessel from direct light with aluminium foil.

Synthesis of [Au(NCMe)(PtBu₂C₆H₄Ph-2)]BF₄ [1]BF₄

A 54 mg (0.46 mmol) of NOBF₄ in 5mL acetonitrile was added to 100 mg (0.51 mmol) of Au powder in 10 mL acetonitrile. The reaction mixture was then stirred for 3 h in the absence of visible light with a positive nitrogen flow. The reaction mixture was filtered to remove unreacted Au powder. P^tBu₂C₆H₄Ph-2 (JohnPhos) (137 mg, 0.46 mmol) was then added, and the reaction mixture was stirred for a further 6 h. The resulting solution was concentrated under reduced pressure, and the addition of Et₂O gave Echavarren's catalyst as a white solid (167 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.88-783 (m, 1 H), 7.60–7.54 (m, 5 H), 7.33–7.29 (m, 1 H), 7.15-7.14 (m, 2 H), 2.50 (s, 3 H), 1.40 (d, J = 16.0 *Hz*, 18H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 149.11 (d, J¹³C,³¹P = 12.00 *Hz*), 142.39, 133.32 (d, J¹³C,³¹P = 7.0 *Hz*), 133.06 (d, J¹³C,³¹P = 4.0 *Hz*), 131.55 (d, J¹³C,³¹P = 2.0 Hz), 129.43, 129.30, 127.70, 127.62, 123.52, 119.58, 38.11 (d, $J_{^{13}C,^{31}P} = 28.0 \text{ Hz}$), 30.84, 2.410. ³¹P NMR (162 MHz, CDCl₃): δ (ppm) = 57.19.

Figure 2. ¹³C NMR spectrum of [1]BF₄.

Figure 3. ³¹P NMR spectrum of [1]BF₄.