Electronic Supplementary Information

Self-assembled energetic 3D metal-organic framework [Na₈(N₅)₈(H₂O)₃]_n

based on *cyclo*-N₅⁻

Yuangang Xu,^a Pengcheng Wang,^{*a} Qiuhan Lin,^a Xuefeng Mei,^b Ming Lu^{*a}

^a School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, Jiangsu, China

^b Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

E-mail: alexwpch@njust.edu.cn (P. W.); luming@njust.edu.cn (M. L.)

Table of Contents

1. Experimental Procedures	S3
2. Single-crystal X-ray Diffraction Analysis	S7
3. Computational Details	S15
References	S16

1. Experimental Procedures

General Methods. All reagents and solvents were purchased from Sigma-Aldrich, Aladdin, and Energy Chemical as analytical grade and were used as received. DSC plots were acquired on a differential scanning calorimeter (Mettler Toledo DSC-1) at a scan rate of 5 °C min⁻¹ in perforated stainless steel containers under a nitrogen flow of 50 mL min⁻¹. TG analysis was also performed at a heating rate of 5 °C min⁻¹ on a Mettler Toledo TGA/SDTA851e instrument. IR spectra were recorded on a Thermo Nicolet IS10 instrument. Raman spectra were collected using a Horiba-Jobin Yvon Labram HR800 Raman spectrometer with a 514.532 nm Ar⁺ laser. A 50× objective was used to focus the laser beam. Elemental analyses were carried out on a vario EL III CHNOS elemental analyzer. The morphologies of complex **2** were analyzed by the HIROX KH-7700 digital microscope system and scanning electron microscope (Hitachi S4800, Hitachi TM3000).

Caution: Although we have not experienced any difficulties in synthesizing and handing the complex, it is a potentially dangerous explosive. Proper protective precautions must be used.

Complex 1 was prepared according to our previously reported methods.¹

Complex **2**: 1.0 mmol of $[Na(H_2O)(N_5)] \cdot 2H_2O$ (147 mg) was added to 10 ml of ammonia, 2M in methanol. Single crystals of **2** were obtained by maintaining the solutions at ambient temperature for several days. Colorless crystals; yield: 85%; $T_d = 129 \text{ °C}$; IR (KBr): $\tilde{v} = 3626$, 3407, 2036, 1615, 1393, 1361, 1231, 1032, 587 cm⁻¹; Raman (514.532 nm, 25 °C): 1178, 117 cm⁻¹; Elemental analysis calcd (%) for Na₈N₄₀H₆O₃ (798.24): H 0.76, N 70.19; found: H 0.82, N 70.11.

Fig. S1 3D digital microscope image of crystal 2.

Fig. S2 Scanning electron microscope images of crystal 2.

Fig. S3 The two forms of N_5 rings. Bond lengths in Å.

Fig. S4 The IR spectra of crystal 1 and 2.

Fig. S5 The Raman spectra of crystal 2.

2. Single-crystal X-ray Diffraction Analysis

The single crystal X-ray diffraction measurements for **2** were conducted on a Bruker Smart Apex II diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å) with a graphite monochromator at 100 K. An Oxford Cobra low-temperature device was used to maintain the low temperature. Integration and scaling of intensity data was accomplished using the SAINT program². The structures were solved by intrinsic using SHELXT2014 and refinement was carried out by a full-matrix least-squares technique using SHELXT2014³. The hydrogen atoms were refined isotropically, and the heavy atoms were refined anisotropically. N-H and O-H hydrogens were located from different electron density maps, and C-H hydrogens were placed in calculated positions and refined with a riding model. Data were corrected for the effects of absorption using SADABS⁴. The highly disordered guest molecules in **2**, which led to high *R* and w*R* values, were removed by the SQUEEZE routine⁵ in *PLATON*.

CCDC	1544793
Empirical formula	$Na_8N_{40}H_6O_3$
Temperature / K	100.0
Crystal system	cubic
Space group	Pm-3n
<i>a</i> / Å	18.238(10)
b / Å	18.238(10)
<i>c</i> / Å	18.238(10)
α /°	90
β /°	90
γ /°	90
Volume / Å ³	6067(10)
Ζ	6
$ ho_{ m calc}$ / g cm ⁻³	1.301
μ / mm ⁻¹	0.179
<i>F</i> (000)	2352.0
Crystal size / mm ³	$0.28\times0.15\times0.12$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2θ range for data collection/°	4.466 to 54.968
Index ranges	$-23 \le h \le 8, -9 \le k \le 22, -21 \le l \le 23$
Reflections collected	14408
Independent reflections	1279 [$R_{\text{int}} = 0.0717, R_{\text{sigma}} = 0.0329$]
Data / restraints / parameters	1279 / 0 / 70
Goodness-of-fit on F^2	1.078
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0606, wR_2 = 0.1803$
Final R indexes [all data]	$R_1 = 0.0784, wR_2 = 0.2027$
Largest diff. peak / hole / e Å ⁻³	1.10 / -0.51

 Table S1 Crystal data and structure refinement details of complex 2.

parameter	bond length (Å)	parameter	bond length (Å)
N6 N5	1.329(3)	Na2 N5 ⁵	2.475(3)
N6 N5 ¹	1.329(3)	Na2 N5 ⁸	2.475(3)
N6 Na3	2.402(3)	Na2 N1 ⁹	2.530(4)
Nal Nal ²	4.116(4)	Na2 N3	2.465(3)
Na1 Na2	4.188(2)	Na2 N3 ⁷	2.465(3)
Na1 Na2 ³	4.188(2)	Na2 O2	2.578(7)
Na1 Na2 ⁴	4.188(2)	Na2 O1	2.671(6)
Na1 N4 ³	2.470(3)	N4 N4 ¹	1.315(4)
Na1 N4	2.470(3)	N2 N3	1.321(3)
Nal N4 ⁵	2.470(3)	N3 N3 ⁶	1.327(4)
Na1 N2 ³	2.455(3)	O2 Na3 ¹⁰	2.863(9)
Na1 N2	2.455(3)	O1 Na26	2.671(6)
Na1 N2 ⁵	2.455(3)	Na3 N6 ¹¹	2.402(3)
N5 Na2 ³	2.475(3)	Na3 N6 ¹²	2.402(3)
N5 N4	1.317(3)	Na3 N6 ¹³	2.402(3)
N1 Na2 ⁴	2.530(4)	Na3 O2 ¹⁴	2.863(9)
N1 N2	1.325(3)	Na3 O2 ¹⁵	2.863(9)
N1 N2 ⁶	1.325(3)	Na3 O2 ¹⁶	2.863(9)
Na2 Na1 ⁷	4.188(2)	Na3 O2 ³	2.863(9)

Table S2 Bond lengths of complex 2.

Table S3 Bond angles of complex 2.

parameter	bond angle (°)	parameter	bond angle (°)
N5 N6 N5 ¹	108.4(3)	N5 ⁸ Na2O1	109.96(13)
N5 N6 Na3	125.83(14)	N1 ⁹ Na2 Na1	53.627(18)
N5 ¹ N6 Na3	125.82(14)	N1 ⁹ Na2 Na1 ⁷	53.627(18)
Na1 ² Na1 Na2 ³	109.06(3)	N1 ⁹ Na2 O2	156.6(2)
Na1 ² Na1 Na2	109.06(3)	N1 ⁹ Na2O1	155.29(19)
Na1 ² Na1 Na2 ⁴	109.06(3)	N3 Na2 Na1 ⁷	123.60(8)
Na2 ³ Na1 Na2	109.88(3)	N3 Na2 Na1	54.91(5)
Na2 ⁴ Na1 Na2 ³	109.88(3)	N37 Na2 Na1	123.60(8)
Na2 ⁴ Na1 Na2	109.88(3)	N3 ⁷ Na2 Na1 ⁷	54.91(5)
N4 Na1 Na1 ²	55.08(6)	N3 Na2 N5 ⁵	91.20(8)
N4 ⁵ Na1 Na1 ²	55.08(6)	N3 ⁷ Na2 N5 ⁵	177.61(10)
N4 ⁴ Na1 Na1 ²	55.08(6)	N37 Na2 N58	91.20(8)
N4 ⁵ Na1 Na2 ⁴	122.44(6)	N3 Na2 N5 ⁸	177.61(10)
N4 ⁵ Na1 Na2	54.07(5)	N3 Na2 N1 ⁹	90.30(9)
N4 ⁴ Na1 Na2 ⁴	127.68(6)	N37 Na2 N19	90.30(9)

N4	Nal Na2	127.68(6)	N3 ⁷ Na2 N3	88.99(11)
N4	Na1 Na2 ⁴	54.07(5)	N3 Na2 O2	106.17(15)
N4	Na1 Na2 ³	122.44(6)	N3 ⁷ Na2 O2	106.17(15)
N4 ⁵	Na1 Na2 ³	127.68(6)	N3 Na2 O1	72.36(13)
N44	Na1 Na2	122.44(6)	N3 ⁷ Na2 O1	72.36(13)
N44	Na1 Na2 ³	54.07(5)	O2 Na2 Na1 ⁷	123.51(6)
N4 ⁵	Na1 N4	90.48(8)	O2 Na2 Na1	123.51(6)
N4 ⁵	Na1 N4 ⁴	90.48(8)	O2 Na2O1	48.1(3)
N4 ⁴	Na1 N4	90.48(8)	O1 Na2Na1	122.05(6)
N2 ⁵	Nal Nal ²	123.87(7)	O1 Na2Na1 ⁷	122.05(6)
N2	Nal Nal ²	123.87(7)	N5 N4 Na1	126.86(16)
N2 ⁴	Nal Nal ²	123.87(7)	N4 ¹ N4 Na1	123.32(8)
N2 ⁵	Na1 Na2 ³	53.74(6)	N4 ¹ N4 N5	108.59(13)
N2 ⁴	Na1 Na2 ³	127.05(8)	N1 N2 Na1	123.49(18)
N2	Na1 Na2 ³	56.15(6)	N3 N2 Na1	127.77(16)
N2 ⁵	Na1 Na2 ⁴	56.15(6)	N3 N2 N1	108.7(2)
N2 ⁴	Na1 Na2	56.15(6)	N2 N3 Na2	123.35(16)
N24	Na1 Na2 ⁴	53.74(6)	N2 N3 N3 ⁶	107.75(13)
N2	Na1 Na2 ⁴	127.05(8)	N3 ⁶ N3 Na2	128.20(6)
N2 ⁵	Na1 Na2	127.05(8)	Na2 O2 Na3 ¹⁰	103.6(2)
N2	Na1 Na2	53.74(6)	Na2 ⁶ O1 Na2	110.0(3)
N2 ⁵	Nal N4	87.76(7)	N6 ¹¹ Na3 N6	180.00(14)
N2	Nal N4	178.22(8)	N6 ¹¹ Na3 N6 ¹²	90.0
N24	Nal N4	89.82(8)	N6 ¹³ Na3 N6	90.0
N2	Nal N4 ⁵	89.81(8)	N6 ¹¹ Na3 N6 ¹³	90.0
N24	Na1 N4 ⁴	178.22(8)	N6 ¹² Na3 N6 ¹³	180.00(14)
N2 ⁵	Na1 N4 ⁵	178.22(8)	N6 ¹² Na3 N6	90.0
N2	Na1 N4 ⁴	87.76(7)	N6 ¹¹ Na3 O2 ¹⁴	75.66(8)
N24	Na1 N4 ⁵	87.76(7)	N6 ¹² Na3 O2 ⁴	75.66(8)
N2 ⁵	Na1 N4 ⁴	89.81(8)	N6 ¹² Na3 O2 ¹⁴	75.66(8)
N2 ⁵	Na1 N2	91.95(10)	N6 ¹¹ Na3 O2 ¹⁵	75.66(8)
N2 ⁵	Na1 N2 ⁴	91.95(10)	N6 Na3 O2 ⁴	75.66(8)
N2 ⁴	Na1 N2	91.95(10)	N6 ¹² Na3 O2 ¹⁶	104.34(8)
N6	N5 Na2 ⁴	128.46(16)	N6 Na3 O2 ¹⁵	104.34(8)
N4	N5 N6	107.2(2)	N6 ¹³ Na3 O2 ¹⁶	75.66(8)
N4	N5 Na2 ⁴	123.99(16)	N6 ¹³ Na3 O2 ¹⁴	104.34(8)
N26	N1 Na2 ³	126.16(15)	N6 ¹³ Na3 O2 ⁴	104.34(8)
N2	N1 Na2 ³	126.17(15)	N6 ¹¹ Na3 O2 ¹⁶	104.34(8)
N26	N1 N2	107.1(3)	N6 ¹² Na3 O2 ¹⁵	104.34(8)
Na1	Na2 Na1 ⁷	107.21(4)	N6 ¹¹ Na3 O2 ⁴	104.34(8)

N5 ⁸	Na2 Na1 ⁷	54.86(5)	N6 Na3 O2 ¹⁶	75.66(8)
N5 ⁸	Na2 Na1	123.22(8)	N6 Na3 O214	104.34(8)
N5 ⁵	Na2 Na1	54.86(5)	N6 ¹³ Na3 O2 ¹⁵	75.66(8)
N5 ⁵	Na2 Na1 ⁷	123.22(8)	O2 ¹⁵ Na3 O2 ¹⁶	151.33(17)
N5 ⁵	Na2 N5 ⁸	88.51(13)	O24 Na3 O215	41.0(2)
N5 ⁵	Na2 N19	87.32(9)	O24 Na3 O216	151.33(17)
N58	Na2 N19	87.32(9)	O2 ¹⁴ Na3 O2 ⁴	151.33(17)
N58	Na2O2	76.06(15)	O2 ¹⁴ Na3 O2 ¹⁶	41.0(2)
N5 ⁵	Na2O2	76.06(15)	O2 ¹⁴ Na3 O2 ¹⁵	151.33(17)
N5 ⁵	Na2 O1	109.96(13)		

Fig. S7 The asymmetric unit of crystal 2.

Fig. S8 Coordination environment of Na3 in crystal 2.

Fig. S9 Coordination environment of Na1 in crystal 2.

Fig. S10 Coordination model of *cyclo*-N₅⁻ in crystal **2**.

Fig. S11 Selected one cage in crystal 2.

Fig. S12 3D framework of 2 view along c axis.

Fig. S13 3D framework of 2 view along a axis.

Fig. S14 3D framework of 2 view along b axis.

Fig. S15 A schematic representation of the topology, in which the *cyclo*-N₅⁻ ligands are represented by blue spheres and the Na ions are represented by purple spheres.

Ť

3. Computational Details

The experimental result for the constant volume combustion energy $(\Delta_c U)$ of **2** is -4784.74 J g⁻¹. According to the formula $\Delta_c H_m^{\theta} = \Delta_c U_m^{\theta} + \Delta nRT$, $\Delta n = n_g(products) - n_g(reactants)$, $(n_g \text{ is the total molar})$ amount of gases in the products or reactants, $R = 8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$, and T = 298.15 K), the enthalpy of combustion $(\Delta_c H_m^{\theta})$ can be derived to be -3779.71 kJ mol⁻¹ for eqn (1). The combustion reaction equation is listed as follows:

$$Na_{8}N_{40}H_{6}O_{3}(s) + 4O_{2}(g) \rightarrow 4Na_{2}O_{2}(s) + 3H_{2}O(l) + 20N_{2}(g) (1)$$

$$\Delta_f H_m^{\theta}(2,s) = 4 \Delta_f H_m^{\theta}(Na_2O_2,s) + 3 \Delta_f H_m^{\theta}(H_2O,l) - \Delta_c H_m^{\theta}(1,s)$$
(2)

Based on the calculated enthalpy of combustion and the known enthalpy of formation of the combustion products⁶ determined experimentally, Na₂O₂(s), $\Delta_c H_m^{\theta}$ (Na₂O₂, s) = -510.9 kJ mol⁻¹, H₂O (l), $\Delta_c H_m^{\theta}$ (H₂O, l) = -285.830 kJ mol⁻¹, the standard enthalpy of formation of **2**, $\Delta_c H_m^{\theta}$, was back-calculated from the combustion equation. On the basis of Hess's law in thermochemical eqn (2), the standard enthalpy of formation ($\Delta_f H_m^{\theta}$) of **2** is calculated to be 878.62 kJ mol⁻¹.

On the basis of the largest exothermic principle proposed by Kamlet-Jacobs (K-J),⁷ We employed a widely used empirical method⁸⁻¹⁰ which employed the hypothesis of BKW equation and arbitrary theory of the Kamlet-Jacobs method to investigate the detonation properties of metal-containing explosives. For systems with metals, the most stable products of detonation reaction were assumed under the constraints of stoichiometrically available oxygen.¹¹ The detonation reaction of **2** is described by equation (3), and the detonation properties are calculated by

K-J equations as follows:

$$\begin{split} &Na_8 N_{40} H_6 O_3(s) \rightarrow 3 \ Na_2 O(s) + 2 \ Na(s) + 2 \ NH_3(g) + 19 \ N_2(g) \ (3) \\ &D = 1.01 \varphi^{\frac{1}{2}} (1 + 1.30 \rho) \\ &P = 1.558 \varphi \rho^2 \\ &\varphi = 31.68 N (MQ)^{1/2} \\ &Q = \frac{-\left[\Delta_f H_m^{\theta} (detonation \ products) - \Delta_f H_m^{\theta} (explosive)\right]}{formula \ weight \ of \ explosive} \end{split}$$

where: *D* is detonation velocity (km s⁻¹), *P* is detonation pressure (GPa), *N* is moles of detonation gases per gram of explosive, *M* is average molecular weight of the gases, *Q* is the chemical energy of detonation (kcal g⁻¹) and ρ is the density of explosive (g cm⁻³). According to the known enthalpies of formation, including NH₃(g) (-46 kJ mol-

¹), Na₂O(s) (-416 kJ mol⁻¹) and the $\Delta f H_m^{\theta}$ of **2**, the *Q* for **2** is 0.664 kcal·g⁻¹. Utilizing the above equation (3), and the known values of *N*, *M* and *Q*, the *D* and *P* can be obtained.

References

- 1 Y. Xu, Q. Wang, C. Shen, Q. Lin, P. Wang and M. Lu, *Nature*, 2017, 549, 78-81.
- 2 SAINT v7.68A Bruker AXS Inc.: Madison, WI, 2009.
- 3 G. M. Sheldrick, SHELXL-2014/7, University of Göttingen, Germany, 2014.
- 4 SADABS v2008/1 Bruker AXS Inc.: Madison, WI, 2008.
- 5 (a) A. L. Spek, Acta Cryst. D, 2009, 65, 148-155. (b) A. L. Spek, Acta Cryst. C, 2015, 71, 9-18.
- 6 J. D. Cox, D. D. Wagman and V. A. Medvedev, *CODATA Key Values for Thermodynamics*, Hemisphere Publishing Corp, New York, 1989.
- 7 M. J. Kamlet and S. Jacobs, J. Chem. Phys., 1968, 48, 23-35.
- 8 Y. Wang, J. Zhang, H. Su, S. Li, S. Zhang and S. Pang, J. Phys. Chem. A, 2014, 118, 4575-4581.
- 9 Y. Zhang, S. Zhang, L. Sun, Q. Yang, J. Han, Q. Wei, G. Xie, S. Chen and S. Gao, *Chem. Commun.*, 2017, **53**, 3034-3037.
- 10 X. Qu, S. Zhang, B. Wang, Q. Yang, J. Han, Q. Wei, G. Xie and S. Chen, *Dalton Trans.*, 2016, **45**, 6968-6973.
- 11 O. S. Bushuyev, P. Brown, A. Maiti, R. H. Gee, G. R. Peterson, B. L. Weeks and L. J. Hope-Weeks, *J. Am. Chem. Soc.*, 2012, **134**, 1422-1425.