## Water driven formation of channels: unusual solid-state structural transformation of a heterometallic polymer

Franco Scalambra, Manuel Serrano-Ruiz, Antonio Romerosa\*

## **Table of Contents**

| X-ray diffraction data for 1.DMSO               | S1  |
|-------------------------------------------------|-----|
| X-ray diffraction data for 2·15H <sub>2</sub> O | S4  |
| NMR characterization of 1·DMSO                  |     |
| NMR characterization of 2·15H <sub>2</sub> O    | S15 |
| DOSY-NMR of $1 \cdot DMSO$ and $2 \cdot 15H_2O$ |     |

| Empirical formula                    | $C_{39}H_{70}Cl_{3}CoN_{13}O_{2}P_{4}Ru_{2}S_{2}$      |
|--------------------------------------|--------------------------------------------------------|
| Formula weight                       | 1308.50                                                |
| Temperature/K                        | 100                                                    |
| Crystal system                       | monoclinic                                             |
| Space group                          | C2/c                                                   |
| a/Å                                  | 18.4888(13)                                            |
| b/Å                                  | 15.9993(12)                                            |
| c/Å                                  | 17.5570(13)                                            |
| a/°                                  | 90                                                     |
| β/°                                  | 96.1210(10)                                            |
| $\gamma/^{\circ}$                    | 90                                                     |
| Volume/Å <sup>3</sup>                | 5163.9(7)                                              |
| Z                                    | 4                                                      |
| $\rho_{calc}g/cm^3$                  | 1.683                                                  |
| µ/mm <sup>-1</sup>                   | 1.304                                                  |
| F(000)                               | 2676.0                                                 |
| Crystal size/mm <sup>3</sup>         | $0.182 \times 0.063 \times 0.058$                      |
| Radiation                            | MoK $\alpha$ ( $\lambda = 0.71073$ )                   |
| 2@ range for data collection/°       | 3.374 to 53.464                                        |
| Index ranges                         | $-23 \le h \le 20, -20 \le k \le 18, -21 \le l \le 22$ |
| Reflections collected                | 16361                                                  |
| Independent reflections              | 5452 [ $R_{int} = 0.0256$ , $R_{sigma} = 0.0293$ ]     |
| Data/restraints/parameters           | 5452/0/301                                             |
| Goodness-of-fit on F <sup>2</sup>    | 1.052                                                  |
| Final R indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0254, wR_2 = 0.0562$                          |
| Final R indexes [all data]           | $R_1 = 0.0297, wR_2 = 0.0581$                          |
| Largest diff. peak/hole / e Å-3      | 0.44/-0.27                                             |
|                                      |                                                        |

| Table S1 | . Crystal | data an | d structure | refinement | for 1 | I · DMSO. |
|----------|-----------|---------|-------------|------------|-------|-----------|
|----------|-----------|---------|-------------|------------|-------|-----------|

| Atom | Atom             | Length/Å   | Atom | Atom | Length/Å |
|------|------------------|------------|------|------|----------|
| Ru1  | P2               | 2.2615(5)  | N11  | C16  | 1.494(2) |
| Ru1  | P1               | 2.2552(6)  | N11  | C13  | 1.487(3) |
| Ru1  | C1P              | 2.0292(19) | N12  | C14  | 1.456(3) |
| Ru1  | C35              | 2.240(2)   | N12  | C11  | 1.472(3) |
| Ru1  | C34              | 2.209(2)   | N12  | C15  | 1.461(3) |
| Ru1  | C33              | 2.197(2)   | N13  | C16  | 1.463(3) |
| Ru1  | C31              | 2.237(2)   | N13  | C12  | 1.470(3) |
| Ru1  | C32              | 2.219(2)   | N13  | C15  | 1.472(3) |
| Ru1  | N1P              | 2.0292(19) | N21  | C25  | 1.466(3) |
| Co2  | Cl1              | 2.3021(8)  | N21  | C22  | 1.475(3) |
| Co2  | C12              | 2.3063(5)  | N21  | C26  | 1.467(3) |
| Co2  | Cl2 <sup>1</sup> | 2.3063(5)  | N23  | C25  | 1.469(3) |
| Co2  | N11              | 2.2831(17) | N23  | C21  | 1.472(3) |

| Co2 | $N11^{1}$ | 2.2831(17) | N23 | C24     | 1.467(3) |
|-----|-----------|------------|-----|---------|----------|
| P2  | C22       | 1.849(2)   | N22 | C23     | 1.466(3) |
| P2  | C23       | 1.841(2)   | N22 | C26     | 1.472(3) |
| P2  | C21       | 1.847(2)   | N22 | C24     | 1.464(3) |
| P1  | C11       | 1.849(2)   | C1P | $C1P^2$ | 1.147(4) |
| P1  | C12       | 1.845(2)   | C35 | C34     | 1.434(3) |
| P1  | C13       | 1.844(2)   | C35 | C31     | 1.406(3) |
| S1D | O1D       | 1.5037(17) | C34 | C33     | 1.415(3) |
| S1D | C1D       | 1.781(2)   | C33 | C32     | 1.423(4) |
| S1D | C2D       | 1.783(2)   | C31 | C32     | 1.425(4) |
| N11 | C14       | 1.494(2)   |     |         |          |

 Table S2. Bond Lengths for 1.DMSO.

| Atom | Atom | Atom | Angle/°   | Atom             | Atom | Atom | Angle/°    |
|------|------|------|-----------|------------------|------|------|------------|
| P1   | Ru1  | P2   | 100.42(2) | C13              | P1   | C11  | 97.90(9)   |
| C1P  | Ru1  | P2   | 86.61(5)  | C13              | P1   | C12  | 98.17(10)  |
| C1P  | Ru1  | P1   | 88.54(6)  | O1D              | S1D  | C1D  | 106.91(11) |
| C1P  | Ru1  | C35  | 116.64(8) | O1D              | S1D  | C2D  | 106.27(11) |
| C1P  | Ru1  | C34  | 154.16(8) | C1D              | S1D  | C2D  | 97.02(13)  |
| C1P  | Ru1  | C33  | 144.13(8) | C14              | N11  | Co2  | 109.10(12) |
| C1P  | Ru1  | C31  | 95.14(8)  | C14              | N11  | C16  | 107.87(15) |
| C1P  | Ru1  | C32  | 107.68(9) | C16              | N11  | Co2  | 108.12(12) |
| C35  | Ru1  | P2   | 94.07(6)  | C13              | N11  | Co2  | 111.32(12) |
| C35  | Ru1  | P1   | 151.73(6) | C13              | N11  | C14  | 110.13(15) |
| C34  | Ru1  | P2   | 95.83(6)  | C13              | N11  | C16  | 110.21(16) |
| C34  | Ru1  | P1   | 116.09(6) | C14              | N12  | C11  | 111.76(16) |
| C34  | Ru1  | C35  | 37.59(8)  | C14              | N12  | C15  | 109.13(16) |
| C34  | Ru1  | C31  | 62.25(9)  | C15              | N12  | C11  | 110.72(16) |
| C34  | Ru1  | C32  | 62.68(9)  | C16              | N13  | C12  | 110.94(17) |
| C33  | Ru1  | P2   | 128.81(7) | C16              | N13  | C15  | 108.82(16) |
| C33  | Ru1  | P1   | 89.83(6)  | C12              | N13  | C15  | 111.33(16) |
| C33  | Ru1  | C35  | 62.36(9)  | C25              | N21  | C22  | 111.17(17) |
| C33  | Ru1  | C34  | 37.47(8)  | C25              | N21  | C26  | 108.35(18) |
| C33  | Ru1  | C31  | 62.35(9)  | C26              | N21  | C22  | 111.16(18) |
| C33  | Ru1  | C32  | 37.60(9)  | C25              | N23  | C21  | 110.18(18) |
| C31  | Ru1  | P2   | 124.06(6) | C24              | N23  | C25  | 107.96(17) |
| C31  | Ru1  | P1   | 135.49(6) | C24              | N23  | C21  | 111.11(17) |
| C31  | Ru1  | C35  | 36.60(8)  | C23              | N22  | C26  | 110.79(17) |
| C32  | Ru1  | P2   | 155.61(7) | C24              | N22  | C23  | 111.14(17) |
| C32  | Ru1  | P1   | 99.62(7)  | C24              | N22  | C26  | 108.17(18) |
| C32  | Ru1  | C35  | 62.03(8)  | C1P <sup>2</sup> | C1P  | Ru1  | 179.0(3)   |
| C32  | Ru1  | C31  | 37.29(9)  | N12              | C14  | N11  | 114.43(16) |
| N1P  | Ru1  | P2   | 86.61(5)  | N12              | C11  | P1   | 112.76(14) |
| N1P  | Ru1  | P1   | 88.54(6)  | N13              | C16  | N11  | 114.46(16) |

| N1P              | Ru1 | C35              | 116.64(8)   | N13 | C12 | P1  | 112.84(14) |
|------------------|-----|------------------|-------------|-----|-----|-----|------------|
| N1P              | Ru1 | C34              | 154.16(8)   | N11 | C13 | P1  | 113.07(14) |
| N1P              | Ru1 | C33              | 144.13(8)   | N12 | C15 | N13 | 113.99(17) |
| N1P              | Ru1 | C31              | 95.14(8)    | N21 | C25 | N23 | 114.83(18) |
| N1P              | Ru1 | C32              | 107.68(9)   | N21 | C22 | P2  | 112.50(15) |
| Cl1              | Co2 | Cl2              | 119.594(16) | N22 | C23 | P2  | 113.42(15) |
| Cl1              | Co2 | Cl2 <sup>1</sup> | 119.593(16) | C34 | C35 | Ru1 | 70.04(12)  |
| Cl2              | Co2 | Cl2 <sup>1</sup> | 120.81(3)   | C31 | C35 | Ru1 | 71.60(13)  |
| N11              | Co2 | Cl1              | 88.89(4)    | C31 | C35 | C34 | 108.1(2)   |
| N11 <sup>1</sup> | Co2 | Cl1              | 88.89(4)    | N23 | C21 | P2  | 113.39(14) |
| N11              | Co2 | Cl2              | 90.24(4)    | C35 | C34 | Ru1 | 72.37(12)  |
| N11 <sup>1</sup> | Co2 | Cl2 <sup>1</sup> | 90.24(4)    | C33 | C34 | Ru1 | 70.81(13)  |
| N11              | Co2 | $Cl2^1$          | 90.86(4)    | C33 | C34 | C35 | 107.5(2)   |
| N11 <sup>1</sup> | Co2 | Cl2              | 90.86(4)    | N21 | C26 | N22 | 114.19(17) |
| N11 <sup>1</sup> | Co2 | N11              | 177.78(9)   | N22 | C24 | N23 | 114.89(18) |
| C22              | P2  | Ru1              | 127.17(7)   | C34 | C33 | Ru1 | 71.72(13)  |
| C23              | P2  | Ru1              | 116.65(7)   | C34 | C33 | C32 | 108.5(2)   |
| C23              | P2  | C22              | 97.37(10)   | C32 | C33 | Ru1 | 72.02(14)  |
| C23              | P2  | C21              | 97.36(10)   | C35 | C31 | Ru1 | 71.79(12)  |
| C21              | P2  | Ru1              | 115.49(7)   | C35 | C31 | C32 | 108.5(2)   |
| C21              | P2  | C22              | 97.23(10)   | C32 | C31 | Ru1 | 70.64(12)  |
| C11              | P1  | Ru1              | 113.81(7)   | C33 | C32 | Ru1 | 70.39(12)  |
| C12              | P1  | Ru1              | 120.08(7)   | C33 | C32 | C31 | 107.4(2)   |
| C12              | P1  | C11              | 96.70(10)   | C31 | C32 | Ru1 | 72.07(12)  |
| C13              | P1  | Ru1              | 124.74(7)   |     |     |     |            |

Table S3. Bond Angles for 1. DMSO.

| Empirical formula | $C_{105}H_{234}Cl_7Co_2N_{39}O_{30}P_{12}Ru_6$ |
|-------------------|------------------------------------------------|
| Formula weight    | 3807.29                                        |
| Temperature/K     | 100                                            |
| Crystal system    | monoclinic                                     |
| Space group       | $P2_1/c$                                       |
| a/Å               | 11.7090(9)                                     |
| b/Å               | 16.0946(12)                                    |
| c/Å               | 44.352(3)                                      |
| <u>α/°</u>        | 90                                             |

| β/°                                   | 91.6510(10)                                           |
|---------------------------------------|-------------------------------------------------------|
| γ/°                                   | 90                                                    |
| Volume/Å <sup>3</sup>                 | 8354.8(11)                                            |
| Ζ                                     | 2                                                     |
| $\rho_{calc}g/cm^3$                   | 1.513                                                 |
| µ/mm <sup>-1</sup>                    | 1.019                                                 |
| F(000)                                | 3868.0                                                |
| Crystal size/mm <sup>3</sup>          | $0.051\times0.019\times0.015$                         |
| Radiation                             | MoK $\alpha$ ( $\lambda = 0.71073$ )                  |
| $2\Theta$ range for data collection/° | 3.128 to 52.04                                        |
| Index ranges                          | $-14 \le h \le 6, -19 \le k \le 19, -54 \le l \le 53$ |
| Reflections collected                 | 45999                                                 |
| Independent reflections               | $16422 [R_{int} = 0.0471]$                            |
| Data/restraints/parameters            | 16422/39/951                                          |
| Goodness-of-fit on F <sup>2</sup>     | 1.080                                                 |
| Final R indexes [I>= $2\sigma$ (I)]   | $R_1 = 0.0599, wR_2 = 0.1299$                         |
| Final R indexes [all data]            | $R_1 = 0.0768, wR_2 = 0.1419$                         |
| Largest diff. peak/hole / e Å $^{-3}$ | 1.14/-0.61                                            |

Table S4. Crystal data and structure refinement for  $2 \cdot 15 H_2 O$ .

Note about the chloride position in the crystal structure of  $2.15H_2O$ . More than one crystallographic position containing water molecules that could be a good candidate for the Cl atom. The possible alternative positions should be those in which: a) water molecules are not bonded by hydrogen bonds to PTA-N and b) are close to the cationic moiety. Additionally, changing the clusters of disordered water for Cl should cause in all the cases the instability of the refinement and/or an increase of the R factor. Thus we focused on the fully occupied water molecules that agree with the premises, being found three possible positions: position "A": Xfrac, Yfrac, Zfrac = 0.3386(6), 0.4898(4), 0.10347(18), which was finally assigned to O4; position "B": Xfrac, Yfrac, Zfrac = 0.8646(5), 0.3244(4), 0.10408(15), finally assigned to Cl4. The three possible crystallographic positions were assigned, two of them to 1 O and the remained possition to  $\frac{1}{2}$  Cl. The three possible different combinations display the next Uiso:

Entry 1: Cl4 in position C (final structure). Uiso: Cl4 = 0.092; O4 = 0.082; O7 = 0.055. Entry 2: Cl4 in position A, O4 in position C. Uiso: Cl4 = 0.106; O4 = 0.068; O7 = 0.055. Entry 3: Cl4 in position B, O7 in position C. Uiso: Cl4 = 0.079; O4 = 0.082; O7 = 0.068.

At this point it is important to stress that for each combination the R factor and the GooF remained always unaltered. After this evaluation we considered to discard position Entry 2 due to the high Uiso value when  $\frac{1}{2}$  Cl was locted in it. For what concern Entries 1 and 3, the Uiso are comparable, thus we decided to check the untied spatial occupancy factors:

Entry 1: Cl4 in position C, O7 in position B. sof: Cl4 = 0.4987; O7 = 1.1086. Entry 3: Cl4 in position B, O7 in position C. sof: Cl4 = 0.5458; O7 = 1.0150. Looking to these results we were inclined to assign the  $\frac{1}{2}$  Cl to position C but before to do it, we tried also to test the refinement with tied occupancy factors on Cl4 and O7 and riding hydrogens on O7.

Entry 1: Cl4 in position C, (H<sub>2</sub>)O7 in position B. R% = 5.96. Entry 3: Cl4 in position B, (H<sub>2</sub>)O7 in position C. R% = 5.98.

The slight variation of the R factor let us to choose Entry 1, with O4 in position A, O7 in position B and Cl4 in position C (final structure).

| Atom | Atom | Length/Å   | Atom | Atom              | Length/Å  |
|------|------|------------|------|-------------------|-----------|
| Ru1  | P4   | 2.2547(14) | N10  | C27               | 1.466(7)  |
| Ru1  | P3   | 2.2552(14) | N10  | C24               | 1.483(7)  |
| Ru1  | CCN  | 2.020(5)   | N10  | C29               | 1.464(7)  |
| Ru1  | C32  | 2.230(5)   | NCN  | CCN               | 1.140(7)  |
| Ru1  | C30  | 2.224(5)   | N2   | C4                | 1.467(7)  |
| Ru1  | C34  | 2.220(6)   | N2   | C3                | 1.484(7)  |
| Ru1  | C31  | 2.235(5)   | N2   | C6                | 1.458(8)  |
| Ru1  | C33  | 2.207(6)   | N12  | C28               | 1.463(7)  |
| Ru1  | NCN1 | 2.020(5)   | N12  | C27               | 1.465(7)  |
| Ru2  | P2   | 2.2641(14) | N12  | C26               | 1.473(7)  |
| Ru2  | P1   | 2.2562(15) | N8   | C19               | 1.481(7)  |
| Ru2  | NCN  | 2.025(5)   | N8   | C23               | 1.479(7)  |
| Ru2  | C15  | 2.219(6)   | N8   | C21               | 1.475(7)  |
| Ru2  | C13  | 2.205(6)   | N3   | C5                | 1.480(7)  |
| Ru2  | C17  | 2.230(6)   | N3   | C2                | 1.475(7)  |
| Ru2  | C14  | 2.209(6)   | N3   | C6                | 1.473(7)  |
| Ru2  | C16  | 2.225(6)   | N5   | C7                | 1.476(7)  |
| Ru2  | CCN1 | 2.025(5)   | N5   | C12               | 1.458(9)  |
| Ru3  | P5   | 2.2549(15) | N5   | C10               | 1.455(8)  |
| Ru3  | P6   | 2.2619(15) | N6   | C8                | 1.479(7)  |
| Ru3  | CCNM | 2.013(5)   | N6   | C11               | 1.457(8)  |
| Ru3  | C49  | 2.236(6)   | N6   | C10               | 1.479(8)  |
| Ru3  | C50  | 2.223(6)   | CCNM | CCNM <sup>3</sup> | 1.159(10) |
| Ru3  | C51  | 2.209(6)   | N14  | C35               | 1.480(8)  |
| Ru3  | C47  | 2.245(6)   | N14  | C40               | 1.479(8)  |
| Ru3  | C48  | 2.233(6)   | N14  | C39               | 1.463(9)  |
| Ru3  | NCNM | 2.013(5)   | N16  | C44               | 1.463(8)  |
| Col  | C12  | 2.3311(14) | N16  | C42               | 1.487(7)  |
| Col  | C13  | 2.3433(14) | N16  | C46               | 1.465(8)  |

| Col | Cl1              | 2.3220(14) | N15  | C36               | 1.484(7)  |
|-----|------------------|------------|------|-------------------|-----------|
| Col | N7 <sup>1</sup>  | 2.283(4)   | N15  | C40               | 1.455(8)  |
| Col | N1               | 2.260(4)   | N15  | C38               | 1.459(8)  |
| P4  | C26              | 1.854(5)   | N17  | C41               | 1.489(8)  |
| P4  | C24              | 1.848(5)   | N17  | C44               | 1.451(8)  |
| P4  | C25              | 1.844(5)   | N17  | C45               | 1.446(9)  |
| Р3  | C20              | 1.841(5)   | N4   | С9                | 1.483(7)  |
| Р3  | C19              | 1.833(5)   | N4   | C12               | 1.474(8)  |
| P3  | C18              | 1.840(5)   | N4   | C11               | 1.462(8)  |
| P2  | C7               | 1.852(6)   | N13  | C37               | 1.486(8)  |
| P2  | C8               | 1.852(6)   | N13  | C38               | 1.460(8)  |
| P2  | С9               | 1.840(6)   | N13  | C39               | 1.479(9)  |
| P5  | C36              | 1.844(6)   | N18  | C43               | 1.490(8)  |
| P5  | C35              | 1.836(6)   | N18  | C46               | 1.469(9)  |
| P5  | C37              | 1.847(6)   | N18  | C45               | 1.468(10) |
| P6  | C41              | 1.844(6)   | C32  | C31               | 1.435(8)  |
| P6  | C42              | 1.839(6)   | C32  | C33               | 1.415(8)  |
| P6  | C43              | 1.848(6)   | C49  | C50               | 1.428(9)  |
| P1  | C1               | 1.835(5)   | C49  | C48               | 1.396(9)  |
| P1  | C2               | 1.837(6)   | C30  | C34               | 1.429(9)  |
| P1  | C3               | 1.846(6)   | C30  | C31               | 1.393(8)  |
| N7  | Co1 <sup>2</sup> | 2.283(4)   | C15  | C14               | 1.422(9)  |
| N7  | C22              | 1.490(7)   | C15  | C16               | 1.417(9)  |
| N7  | C20              | 1.489(6)   | C50  | C51               | 1.406(9)  |
| N7  | C21              | 1.485(6)   | C13  | C17               | 1.407(10) |
| N11 | C28              | 1.472(7)   | C13  | C14               | 1.411(9)  |
| N11 | C29              | 1.483(7)   | C34  | C33               | 1.416(9)  |
| N11 | C25              | 1.483(7)   | C17  | C16               | 1.401(9)  |
| N1  | C4               | 1.488(6)   | C51  | C47               | 1.422(9)  |
| N1  | C1               | 1.496(7)   | C47  | C48               | 1.428(10) |
| N1  | C5               | 1.487(7)   | O14C | O14D              | 1.81(4)   |
| N9  | C22              | 1.471(6)   | CCN1 | NCN1              | 1.140(7)  |
| N9  | C23              | 1.470(7)   | NCNM | NCNM <sup>3</sup> | 1.159(10) |
| N9  | C18              | 1.478(7)   |      |                   |           |

Table S5. Bond Lengths for  $2 \cdot 15H_2O$ .

| Atom | Atom | Atom | Angle/°  | Atom | Atom | Atom | Angle/° |
|------|------|------|----------|------|------|------|---------|
| P4   | Ru1  | Р3   | 94.04(5) | C2   | P1   | C3   | 97.3(3) |

**S**6

| CCN  | Ru1 | P4  | 89.08(14)  | C3                | P1   | Ru2              | 116.51(18) |
|------|-----|-----|------------|-------------------|------|------------------|------------|
| CCN  | Ru1 | P3  | 85.89(14)  | C22               | N7   | Co1 <sup>2</sup> | 113.4(3)   |
| CCN  | Ru1 | C32 | 154.2(2)   | C20               | N7   | Co1 <sup>2</sup> | 107.2(3)   |
| CCN  | Ru1 | C30 | 93.9(2)    | C20               | N7   | C22              | 109.5(4)   |
| CCN  | Ru1 | C34 | 104.5(2)   | C21               | N7   | Co1 <sup>2</sup> | 108.5(3)   |
| CCN  | Ru1 | C31 | 117.2(2)   | C21               | N7   | C22              | 107.8(4)   |
| CCN  | Ru1 | C33 | 140.4(2)   | C21               | N7   | C20              | 110.4(4)   |
| C32  | Ru1 | P4  | 115.40(15) | C28               | N11  | C29              | 108.1(4)   |
| C32  | Ru1 | P3  | 99.55(17)  | C28               | N11  | C25              | 110.6(4)   |
| C32  | Ru1 | C31 | 37.5(2)    | C25               | N11  | C29              | 110.3(4)   |
| C30  | Ru1 | P4  | 142.71(17) | C4                | N1   | Col              | 110.5(3)   |
| C30  | Ru1 | P3  | 123.24(16) | C4                | N1   | C1               | 109.6(4)   |
| C30  | Ru1 | C32 | 61.9(2)    | C1                | N1   | Col              | 108.1(3)   |
| C30  | Ru1 | C31 | 36.4(2)    | C5                | N1   | Col              | 109.9(3)   |
| C34  | Ru1 | P4  | 105.98(17) | C5                | N1   | C4               | 108.4(4)   |
| C34  | Ru1 | P3  | 157.40(16) | C5                | N1   | C1               | 110.4(4)   |
| C34  | Ru1 | C32 | 62.6(2)    | C22               | N9   | C18              | 112.4(4)   |
| C34  | Ru1 | C30 | 37.5(2)    | C23               | N9   | C22              | 108.4(4)   |
| C34  | Ru1 | C31 | 62.1(2)    | C23               | N9   | C18              | 110.6(4)   |
| C31  | Ru1 | P4  | 152.60(15) | C27               | N10  | C24              | 109.6(4)   |
| C31  | Ru1 | P3  | 95.26(15)  | C29               | N10  | C27              | 109.0(4)   |
| C33  | Ru1 | P4  | 93.31(15)  | C29               | N10  | C24              | 111.6(4)   |
| C33  | Ru1 | P3  | 133.15(18) | CCN               | NCN  | Ru2              | 176.2(5)   |
| C33  | Ru1 | C32 | 37.2(2)    | C4                | N2   | C3               | 111.4(4)   |
| C33  | Ru1 | C30 | 61.8(2)    | C6                | N2   | C4               | 108.9(4)   |
| C33  | Ru1 | C34 | 37.3(2)    | C6                | N2   | C3               | 112.0(4)   |
| C33  | Ru1 | C31 | 61.9(2)    | NCN               | CCN  | Ru1              | 177.5(5)   |
| NCN1 | Ru1 | P4  | 89.08(14)  | C28               | N12  | C27              | 108.3(4)   |
| NCN1 | Ru1 | P3  | 85.89(14)  | C28               | N12  | C26              | 111.7(4)   |
| NCN1 | Ru1 | C32 | 154.2(2)   | C27               | N12  | C26              | 111.5(4)   |
| NCN1 | Ru1 | C30 | 93.9(2)    | C23               | N8   | C19              | 111.9(4)   |
| NCN1 | Ru1 | C34 | 104.5(2)   | C21               | N8   | C19              | 110.4(4)   |
| NCN1 | Ru1 | C31 | 117.2(2)   | C21               | N8   | C23              | 108.7(4)   |
| NCN1 | Ru1 | C33 | 140.4(2)   | C2                | N3   | C5               | 111.7(4)   |
| P1   | Ru2 | P2  | 96.28(5)   | C6                | N3   | C5               | 108.3(4)   |
| NCN  | Ru2 | P2  | 83.63(14)  | C6                | N3   | C2               | 111.4(4)   |
| NCN  | Ru2 | P1  | 90.25(14)  | C12               | N5   | C7               | 111.1(5)   |
| NCN  | Ru2 | C15 | 111.2(2)   | C10               | N5   | C7               | 111.7(5)   |
| NCN  | Ru2 | C13 | 146.8(2)   | C10               | N5   | C12              | 109.4(5)   |
| NCN  | Ru2 | C17 | 109.9(2)   | C8                | N6   | C10              | 110.2(5)   |
| NCN  | Ru2 | C14 | 148.6(2)   | C11               | N6   | C8               | 110.6(5)   |
| NCN  | Ru2 | C16 | 93.0(2)    | C11               | N6   | C10              | 108.6(5)   |
| C15  | Ru2 | P2  | 159.66(17) | CCNM <sup>3</sup> | CCNM | Ru3              | 178.4(7)   |
| C15  | Ru2 | P1  | 97.51(17)  | C40               | N14  | C35              | 110.5(5)   |
| C15  | Ru2 | C17 | 62.0(2)    | C39               | N14  | C35              | 110.2(5)   |
| C15  | Ru2 | C16 | 37.2(2)    | C39               | N14  | C40              | 108.9(5)   |
|      |     |     | · /        | 1                 |      |                  | × /        |

| C13  | Ru2 | P2  | 97.79(17)  | C44 | N16 | C42 | 110.5(5) |
|------|-----|-----|------------|-----|-----|-----|----------|
| C13  | Ru2 | P1  | 122.29(19) | C44 | N16 | C46 | 109.0(5) |
| C13  | Ru2 | C15 | 62.1(2)    | C46 | N16 | C42 | 110.4(5) |
| C13  | Ru2 | C17 | 37.0(3)    | C40 | N15 | C36 | 111.0(5) |
| C13  | Ru2 | C14 | 37.3(2)    | C40 | N15 | C38 | 109.1(5) |
| C13  | Ru2 | C16 | 61.5(2)    | C38 | N15 | C36 | 111.0(5) |
| C17  | Ru2 | P2  | 100.43(18) | C44 | N17 | C41 | 110.2(5) |
| C17  | Ru2 | P1  | 154.97(18) | C45 | N17 | C41 | 110.9(5) |
| C14  | Ru2 | P2  | 126.96(17) | C45 | N17 | C44 | 109.0(5) |
| C14  | Ru2 | P1  | 92.81(17)  | N9  | C22 | N7  | 114.0(4) |
| C14  | Ru2 | C15 | 37.5(2)    | C12 | N4  | С9  | 110.6(5) |
| C14  | Ru2 | C17 | 62.2(2)    | C11 | N4  | С9  | 111.5(5) |
| C14  | Ru2 | C16 | 62.1(2)    | C11 | N4  | C12 | 109.0(5) |
| C16  | Ru2 | P2  | 132.22(18) | N7  | C20 | P3  | 114.3(3) |
| C16  | Ru2 | P1  | 131.46(18) | N2  | C4  | N1  | 114.0(4) |
| C16  | Ru2 | C17 | 36.7(2)    | N1  | C1  | P1  | 113.7(3) |
| CCN1 | Ru2 | P2  | 83.63(14)  | N12 | C28 | N11 | 114.5(4) |
| CCN1 | Ru2 | P1  | 90.25(14)  | N12 | C27 | N10 | 114.3(4) |
| CCN1 | Ru2 | C15 | 111.2(2)   | C38 | N13 | C37 | 111.5(5) |
| CCN1 | Ru2 | C13 | 146.8(2)   | C38 | N13 | C39 | 108.3(5) |
| CCN1 | Ru2 | C17 | 109.9(2)   | C39 | N13 | C37 | 110.5(5) |
| CCN1 | Ru2 | C14 | 148.6(2)   | N12 | C26 | P4  | 112.4(4) |
| CCN1 | Ru2 | C16 | 93.0(2)    | N8  | C19 | P3  | 112.3(3) |
| P5   | Ru3 | P6  | 96.41(6)   | N10 | C24 | P4  | 112.9(4) |
| CCNM | Ru3 | P5  | 87.75(15)  | N10 | C29 | N11 | 114.7(4) |
| CCNM | Ru3 | P6  | 86.43(15)  | N9  | C23 | N8  | 114.0(4) |
| CCNM | Ru3 | C49 | 112.2(2)   | N8  | C21 | N7  | 114.6(4) |
| CCNM | Ru3 | C50 | 149.5(2)   | N3  | C5  | N1  | 113.7(4) |
| CCNM | Ru3 | C51 | 147.7(2)   | N15 | C36 | P5  | 112.7(4) |
| CCNM | Ru3 | C47 | 110.7(2)   | N9  | C18 | P3  | 112.9(4) |
| CCNM | Ru3 | C48 | 94.4(2)    | C46 | N18 | C43 | 110.9(6) |
| C49  | Ru3 | P5  | 98.15(18)  | C45 | N18 | C43 | 110.4(6) |
| C49  | Ru3 | P6  | 156.72(17) | C45 | N18 | C46 | 109.1(5) |
| C49  | Ru3 | C47 | 62.0(2)    | N11 | C25 | P4  | 113.3(4) |
| C50  | Ru3 | P5  | 94.59(18)  | C31 | C32 | Ru1 | 71.4(3)  |
| C50  | Ru3 | P6  | 123.37(17) | C33 | C32 | Ru1 | 70.5(3)  |
| C50  | Ru3 | C49 | 37.4(2)    | C33 | C32 | C31 | 106.6(5) |
| C50  | Ru3 | C47 | 62.1(2)    | N5  | C7  | P2  | 112.1(4) |
| C50  | Ru3 | C48 | 61.4(2)    | N3  | C2  | P1  | 112.7(4) |
| C51  | Ru3 | P5  | 123.97(17) | C50 | C49 | Ru3 | 70.8(3)  |
| C51  | Ru3 | P6  | 94.78(17)  | C48 | C49 | Ru3 | 71.6(3)  |
| C51  | Ru3 | C49 | 62.0(2)    | C48 | C49 | C50 | 107.4(6) |
| C51  | Ru3 | C50 | 37.0(2)    | N6  | C8  | P2  | 113.4(4) |
| C51  | Ru3 | C47 | 37.2(2)    | N4  | C9  | P2  | 112.2(4) |
| C51  | Ru3 | C48 | 61.6(2)    | C34 | C30 | Ru1 | 71.1(3)  |
| C47  | Ru3 | P5  | 156.54(17) | C31 | C30 | Ru1 | 72.2(3)  |

| C47             | Ru3 | P6              | 99.04(17)  | C31 | C30 | C34 | 109.2(5) |
|-----------------|-----|-----------------|------------|-----|-----|-----|----------|
| C48             | Ru3 | P5              | 130.75(19) | C14 | C15 | Ru2 | 70.9(3)  |
| C48             | Ru3 | P6              | 132.84(19) | C16 | C15 | Ru2 | 71.6(3)  |
| C48             | Ru3 | C49             | 36.4(2)    | C16 | C15 | C14 | 107.4(6) |
| C48             | Ru3 | C47             | 37.2(2)    | N17 | C41 | P6  | 112.9(4) |
| NCNM            | Ru3 | P5              | 87.75(15)  | N2  | C3  | P1  | 112.1(4) |
| NCNM            | Ru3 | P6              | 86.43(15)  | C49 | C50 | Ru3 | 71.8(3)  |
| NCNM            | Ru3 | C49             | 112.2(2)   | C51 | C50 | Ru3 | 71.0(3)  |
| NCNM            | Ru3 | C50             | 149.5(2)   | C51 | C50 | C49 | 107.8(6) |
| NCNM            | Ru3 | C51             | 147.7(2)   | C17 | C13 | Ru2 | 72.5(3)  |
| NCNM            | Ru3 | C47             | 110.7(2)   | C17 | C13 | C14 | 109.0(6) |
| NCNM            | Ru3 | C48             | 94.4(2)    | C14 | C13 | Ru2 | 71.5(3)  |
| Cl2             | Col | C13             | 120.48(6)  | C30 | C34 | Ru1 | 71.4(3)  |
| Cl1             | Col | Cl2             | 114.36(6)  | C33 | C34 | Ru1 | 70.9(3)  |
| Cl1             | Col | Cl3             | 125.16(6)  | C33 | C34 | C30 | 106.4(5) |
| $N7^1$          | Col | Cl2             | 90.35(11)  | C13 | C17 | Ru2 | 70.5(3)  |
| N7 <sup>1</sup> | Col | C13             | 89.68(11)  | C16 | C17 | Ru2 | 71.5(3)  |
| N7 <sup>1</sup> | Col | Cl1             | 90.04(11)  | C16 | C17 | C13 | 107.5(6) |
| N1              | Col | Cl2             | 91.66(12)  | N14 | C35 | P5  | 113.6(4) |
| N1              | Col | C13             | 87.97(11)  | C15 | C14 | Ru2 | 71.7(3)  |
| N1              | Col | Cl1             | 90.54(12)  | C13 | C14 | Ru2 | 71.2(3)  |
| N1              | Col | N7 <sup>1</sup> | 177.47(16) | C13 | C14 | C15 | 107.3(6) |
| C26             | P4  | Ru1             | 117.77(18) | N17 | C44 | N16 | 115.1(5) |
| C24             | P4  | Ru1             | 121.53(17) | C32 | C31 | Ru1 | 71.1(3)  |
| C24             | P4  | C26             | 96.4(3)    | C30 | C31 | Ru1 | 71.4(3)  |
| C25             | P4  | Ru1             | 119.96(18) | C30 | C31 | C32 | 108.3(5) |
| C25             | P4  | C26             | 97.0(2)    | N5  | C12 | N4  | 113.8(5) |
| C25             | P4  | C24             | 98.9(2)    | C50 | C51 | Ru3 | 72.1(3)  |
| C20             | P3  | Ru1             | 122.81(17) | C50 | C51 | C47 | 109.2(6) |
| C19             | P3  | Ru1             | 118.63(17) | C47 | C51 | Ru3 | 72.8(3)  |
| C19             | P3  | C20             | 98.1(2)    | N2  | C6  | N3  | 113.7(5) |
| C19             | P3  | C18             | 98.8(3)    | C32 | C33 | Ru1 | 72.3(3)  |
| C18             | P3  | Ru1             | 117.26(18) | C32 | C33 | C34 | 109.5(5) |
| C18             | P3  | C20             | 96.3(2)    | C34 | C33 | Ru1 | 71.8(3)  |
| C7              | P2  | Ru2             | 122.4(2)   | C15 | C16 | Ru2 | 71.2(3)  |
| C8              | P2  | Ru2             | 113.91(19) | C17 | C16 | Ru2 | 71.9(3)  |
| C8              | P2  | C7              | 96.9(3)    | C17 | C16 | C15 | 108.8(6) |
| C9              | P2  | Ru2             | 122.59(19) | C51 | C47 | Ru3 | 70.0(3)  |
| C9              | P2  | C7              | 98.1(3)    | C51 | C47 | C48 | 105.8(6) |
| C9              | P2  | C8              | 97.5(3)    | C48 | C47 | Ru3 | 70.9(4)  |
| C36             | P5  | Ru3             | 121.7(2)   | N16 | C42 | P6  | 113.1(4) |
| C36             | P5  | C37             | 97.8(3)    | N6  | C11 | N4  | 114.6(5) |
| C35             | P5  | Ru3             | 115.3(2)   | N13 | C37 | P5  | 112.3(4) |
| C35             | P5  | C36             | 97.1(3)    | N15 | C40 | N14 | 113.9(5) |
| C35             | P5  | C37             | 97.7(3)    | N5  | C10 | N6  | 113.9(5) |
| C37             | P5  | Ru3             | 122.0(2)   | N15 | C38 | N13 | 114.7(5) |

|           |    |     | 1              |         |     |          |
|-----------|----|-----|----------------|---------|-----|----------|
| C41       | P6 | Ru3 | 114.3(2) N18   | C43     | P6  | 112.5(4) |
| C41       | P6 | C43 | 97.5(3) C49    | C48     | Ru3 | 71.9(4)  |
| C42       | P6 | Ru3 | 122.6(2) C49   | C48     | C47 | 109.8(6) |
| C42       | P6 | C41 | 97.3(3) C47    | C48     | Ru3 | 71.9(3)  |
| C42       | P6 | C43 | 97.5(3) N14    | C39     | N13 | 114.4(5) |
| C43       | P6 | Ru3 | 122.3(2) N16   | C46     | N18 | 113.7(5) |
| C1        | P1 | Ru2 | 119.99(17) N17 | C45     | N18 | 114.8(5) |
| C1        | P1 | C2  | 98.5(2) NCN    | VI CCN1 | Ru2 | 176.2(5) |
| C1        | P1 | C3  | 97.6(2) CCN    | II NCN1 | Ru1 | 177.5(5) |
| <u>C2</u> | P1 | Ru2 | 121.99(18) NCN | IM NCNM | Ru3 | 178.4(7) |

Table S6. Bond Angles for  $2 \cdot 15H_2O$ .



Figure S1. <sup>1</sup>H NMR spectrum of  $1 \cdot DMSO$  in D<sub>2</sub>O.



**Figure S2**. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of  $1 \cdot DMSO$  in D<sub>2</sub>O.



**Figure S3**.  ${}^{13}C{}^{1}H$  NMR spectrum of **1**·**DMSO** in D<sub>2</sub>O.



**Figure S4**. <sup>1</sup>H-<sup>13</sup>C NMR HSQC-DEPT spectrum of  $1 \cdot DMSO$  in D<sub>2</sub>O.



Figure S5. <sup>1</sup>H NMR spectrum of **1**·DMSO in DMSO-d6.



Figure S6.  ${}^{13}C{}^{1}H$  NMR spectrum of 1·DMSO in DMSO-d6.







Figure S8. <sup>1</sup>H-<sup>13</sup>C NMR HSQC-DEPT spectrum of 1·DMSO in DMSO-d6.





Figure S10. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of  $2 \cdot 15H_2O$  in D<sub>2</sub>O.



Figure S11. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $2 \cdot 15H_2O$  in D<sub>2</sub>O.



Figure S12. <sup>1</sup>H-<sup>13</sup>C NMR HSQC-DEPT spectrum of  $2 \cdot 15H_2O$  in D<sub>2</sub>O





Figure S14. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of  $2 \cdot 15H_2O$  in DMSO-d6.



Figure S15. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $2 \cdot 15H_2O$  in DMSO-d6



**Figure S16**. <sup>1</sup>H-<sup>13</sup>C NMR HSQC-DEPT spectrum of **2**·**15H**<sub>2</sub>**O** in DMSO-d6. **NMR diffusion measurements.** Diffusion-Order Spectroscopy (DOSY) measurements have been

carried out on a Bruker AV500 spectrometer operating at 500.13 MHz for <sup>1</sup>H, using  $\Delta = 3.6 - 4.0$  msec and  $\delta = 83.9 - 99.9$  msec. The observed diffusion coefficients were calibrated against the residual solvent. The shape of the gradient pulse was rectangular and its strength varied automatically in the course of the experiments. The diffusion coefficients (D) was determined from the slope of the regression line ln(I/I0) versus G<sup>2</sup> according to ln(I/I<sub>0</sub>) = -D( $\mu$ G $\delta$ )<sup>2</sup>( $\Delta$ - $\delta$ /3), in which: I and I<sub>0</sub> are the observed spin echo intensity with and without gradients, respectively; G is the gradient strength;  $\Delta$  is the delay between the mid-points of the gradients; D is the diffusion coefficient;  $\delta$  is the gradient length. The calibration of the gradients was carried out by a diffusion measurement of HDO in D<sub>2</sub>O. The experimental error in the D values was estimated to be ±2%.<sup>[11]</sup> All the data leading to the reported D values afforded lines with correlation coefficients of >0.999 and 64 points were used for regression analysis. The gradient strength was increased in 1.5 % steps

from 2%. A measurement of <sup>1</sup>H NMR spectrum and  $T_1$  was carried out before each diffusion experiment and the recovery delay (ca. 5-8 sec) set to five times  $T_1$ . The number of scans was set to 16 per increment. Typical experiment duration is 1.5-3 h.<sup>[2]</sup>



Figure S17. <sup>1</sup>H DOSY spectrum of  $1 \cdot DMSO$  in D<sub>2</sub>O.



Figure S18. <sup>1</sup>H DOSY spectrum of **1**·DMSO in DMSO-d6.



Figure S19. <sup>1</sup>H DOSY spectrum of  $2 \cdot 15H_2O$  in D<sub>2</sub>O.



Figure S20. <sup>1</sup>H DOSY spectrum of 2·15H<sub>2</sub>O in DMSO-d6.

**TG analysis:** TGA was run with a TGA Q50 (TA Instruments) setting a temperature ramp of 5 °C/min from 23 to 140 °C under a nitrogen flux of 50.0 ml/min.



## Figure S21. TGA of 2.15H<sub>2</sub>O.

(1) Casas-Solvas, J. M.; Ortiz-Salmerón, E.; Fernández, I.; García-Fuentes, L.; Santoyo-González, F.; Vargas-Berenguel, A.; *Chem. Eur. J.* **2009**, *15*, 8146-8162: D = (kBT)/( $6\pi\eta$ rH), in which D is the diffusion coefficient, *kB* is the Boltzman constant, *T* is the temperature, and  $\eta$  is the viscosity of the solvent.

(2) a) Serrano-Ruiz, M.; Aguilera-Sáez, L. M.; Lorenzo-Luis, P.; Padrón, J. N.; Romerosa, A.; *Dalton Trans.*, 2013, 42, 11212-11219; b) Mena-Cruz, A.; Lorenzo-Luis, P.; Passarelli, V.; Romerosa, A.; Serrano-Ruiz, M.; *Dalton Trans.* 2011, 40, 3237-3250.