Electronic Supplementary Information

Triphenylbismuth(V) di[(iso)nicotinates] - transmetallation agents or divergent organometalloligands? First organobismuth(V)-based silver(I) coordination polymers

Ahmad Ben Kiran,^{a,‡} Teodora Mocanu,^{b,‡} Alpár Pöllnitz,^a Sergiu Shova,^c Marius Andruh^{*b} and Cristian Silvestru^{*a}

^a Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania. E-mail: <u>cristian.silvestru@ubbcluj.ro</u>; Fax: (+40) 264-590818; Tel: (+40) 264-593833

^b Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, 25 Dumbrava Roşie, 020464 Bucharest, Romania. E-mail: <u>marius.andruh@dnt.ro</u>

^c "Petru Poni" Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Vodă, 700487 Iași, Romania

‡ These co-authors have contributed equally to the work.

Content

Numbering schemes for NMR assignments	S 3
¹ H NMR spectra supporting the complete transmetallation reaction between 1 and Me ₃ SnCl	S 4
¹ H NMR spectra supporting the complete transmetallation reaction between 2 and Me ₃ SnCl	S5
¹ H NMR spectra supporting the complete transmetallation reaction between 1 and $Ni[S_2P(O^iPr)_2]_2$	S 6
31 P NMR spectra supporting the complete transmetallation reaction between 1 and Ni[S ₂ P(O ⁱ Pr) ₂] ₂	S7
¹ H NMR spectra supporting the complete transmetallation reaction between 2 and $Ni[S_2P(O^iPr)_2]_2$	S 8
31 P NMR spectra supporting the complete transmetallation reaction between 2 and Ni[S ₂ P(O ⁱ Pr) ₂] ₂	S9
Molecular structures of compounds 1 and 2	S10
Coordination polymers in the crystal of compounds 3 and 4	S11
Table S1. X-ray crystal data and structure refinement for coordination polymers 1–4	S12
Table S2. X-ray crystal data and structure refinement for coordination polymers 5–9	S13
Table S3. Summary of the experimental results	S 14

Scheme S1. Numbering schemes for the assignment of resonances in NMR spectra

Figure S1. Aromatic region of superimposed ¹H NMR spectra (CDCl₃, 20 °C) of pure Ph₃Bi[O(O)CC₅H₄N-4]₂ (**1**) (spectrum 5), pure Me₃SnCl (spectrum 4), the crude product isolated from the reaction between these two organometallic species (spectrum 3), pure Me₃Sn[O(O)CC₅H₄N-4] (**3**) (spectrum 2), and pure Ph₃BiCl₂ (spectrum 1), illustrating the transmetallation reaction taking place according to the depicted scheme.

Figure S2. Aromatic region of superimposed ¹H NMR spectra (CDCl₃, 20 °C) of pure Ph₃Bi[O(O)CC₅H₄N-3]₂ (**2**) (spectrum 5), pure Me₃SnCl (spectrum 4), the crude product isolated from the reaction between these two organometallic species (spectrum 3), pure Me₃Sn[O(O)CC₅H₄N-3] (**4**) (spectrum 2), and pure Ph₃BiCl₂ (spectrum 1), illustrating the transmetallation reaction taking place according to the depicted scheme.

Figure S3. Superimposed ¹H NMR spectra (CDCl₃, 20 °C) of pure $Ph_3Bi[O(O)CC_5H_4N-4]_2$ (1) (spectrum 5), pure $Ni[S_2P(O^iPr)_2]_2$ (spectrum 4), the crude product isolated from the reaction between these two compounds (spectrum 3), pure Ph_3Bi (spectrum 2), and pure $[(^iPrO)_2P(S)S]_2$ (spectrum 2), illustrating the transmetallation reaction taking place according to the depicted scheme.

118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 f1 (ppm)

Figure S4. Superimposed ³¹P NMR spectra (CDCl₃, 20 °C) of pure Ni[S₂P(OⁱPr)₂]₂ (spectrum 3), the crude product isolated from the reaction between **1** and Ni[S₂P(OⁱPr)₂]₂ (spectrum 2), and pure [(ⁱPrO)₂P(S)S]₂ (spectrum 1), illustrating the transmetallation reaction taking place according to the depicted scheme.

Figure S5. Superimposed ¹H NMR spectra (CDCl₃, 20 °C) of pure Ph₃Bi[O(O)CC₅H₄N-3]₂ (**2**) (spectrum 5), pure Ni[S₂P(OⁱPr)₂]₂ (spectrum 4), the crude product isolated from the reaction between these two compounds (spectrum 3), pure Ph₃Bi (spectrum 2), and pure [(ⁱPrO)₂P(S)S]₂ (spectrum 2), illustrating the transmetallation reaction taking place according to the depicted scheme.

Figure S6. Superimposed ³¹P NMR spectra (CDCl₃, 20 °C) of pure Ni[S₂P(OⁱPr)₂]₂ (spectrum 3), the crude product isolated from the reaction between **2** and Ni[S₂P(OⁱPr)₂]₂ (spectrum 2), and pure [(ⁱPrO)₂P(S)S]₂ (spectrum 1), illustrating the transmetallation reaction taking place according to the depicted scheme.

Ni 2

Figure S7. Molecular structure of **1**. Thermal ellipsoids are drawn at the 30% probability. Hydrogen atoms are omitted for clarity [symmetry code: (i) 1.5-x, y, 0.5-z].

Figure S8. Molecular structure of **2**. Thermal ellipsoids are drawn at the 30% probability. Hydrogen atoms are omitted for clarity.

Figure S9. Coordination polymer in the crystal of **3**. Thermal ellipsoids are drawn at the 30% probability. Hydrogen atoms are omitted for clarity [symmetry codes: (i) -1+x, 1+y, z; (ii) 1+x, -1+y, z].

Figure S10. Coordination polymer in the crystal of **4**. Thermal ellipsoids are drawn at the 30% probability. Hydrogen atoms are omitted for clarity [symmetry codes: (i) x, -y, 0.5+z; (ii) x, -y, -0.5+z].

	1	2	3	4
Empirical formula	C ₃₀ H ₂₃ BiN ₂ O ₄	C ₃₀ H ₂₃ BiN ₂ O ₄	$C_9H_{13}NO_2Sn$	$C_9H_{13}NO_2Sn$
Formula weight	684.48	684.48	285.89	285.89
Temperature (K)	297(2)	294(2)	297(2)	294(2)
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	P2/n	P-1	<i>P</i> -1	C2/c
<i>a</i> (Å)	12.9965(12)	9.0030(12)	6.6686(9)	24.937(10)
<i>b</i> (Å)	9.7492(9)	11.5252(15)	8.9159(12)	7.100(3)
<i>c</i> (Å)	13.4933(13)	12.9642(17)	10.1287(13)	15.414(6)
α (º)	90.00	95.401(2)	79.674(2)	90.00
β (º)	105.707(2)	93.536(2)	72.196(2)	124.647(5)
γ(Ω)	90.00	101.254(2)	75.429(2)	90.00
Volume (ų)	1645.8(3)	1309.0(3)	551.50(13)	2245.1(16)
Ζ	2	2	2	8
D_{calc} (g cm ⁻³)	1.381	1.737	1.722	1.692
Absorption coefficient (mm ⁻¹)	5.387	6.773	2.287	2.247
F(000)	664	664	280	1120
Crystal size (mm)	0.23x0.25x0.29	0.33x0.39x0.40	0.28x0.33x0.39	0.23x0.28x0.37
artheta range for data collection (°)	1.93 to 25.01	1.58 to 24.99	2.12 to 24.99	1.98 to 26.37
Reflections collected	15123	12304	5081	11208
Independent reflections	2906	4564	1885	2282
	$[R_{int} = 0.0565]$	$[R_{int} = 0.0516]$	$[R_{int} = 0.0210]$	$[R_{int} = 0.0324]$
Absorption correction	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹
Data / restraints / parameters	2906 / 0 / 169	4564 / 24 / 334	1885/0/118	2282 / 0 / 119
Goodness-of-fit on <i>F</i> ²	1.071	0.973	1.087	1.111
Final <i>R</i> indices [<i>I</i> >2σ(<i>I</i>)]	$R_1 = 0.0270$	$R_1 = 0.0318$	$R_1 = 0.0225$	$R_1 = 0.0266$
	$wR_2 = 0.0641$	$wR_2 = 0.0572$	$wR_2 = 0.0569$	$wR_2 = 0.0619$
R indices (all data)	$R_1 = 0.0297$	$R_1 = 0.0408$	$R_1 = 0.0243$	$R_1 = 0.0298$
	$wR_2 = 0.0650$	$wR_2 = 0.0597$	$wR_2 = 0.0579$	$wR_2 = 0.0634$
Largest difference peak and hole (e Å ⁻³)	0.35 and -1.44	0.92 and -0.95	0.41 and -0.38	0.32 and -0.45
CCDC No.	1585633	1585634	1585635	1585636

Table S1.X-ray crystal data and structure refinement for compounds 1–4.

¹ G. M. Sheldrick, *SADABS, Program for area detector adsorption correction*, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.

	5	6 ⋅CH ₂ Cl ₂	7 ·2THF	8·CH ₂ Cl ₂	9 ⋅CH ₂ Cl ₂
Empirical formula	$C_{31}H_{23}AgBiF_3N_2O_7S$	$C_{64}H_{50}Ag_2Bi_2CI_4F_6N_4O_{14}S_2$	$C_{38}H_{39}AgBiF_6N_2O_6S_2Sb$	$C_{31}H_{25}AgBiCl_2F_6N_2O_4Sb$	C ₃₁ H ₂₅ AgBiCl ₂ N ₃ O ₇
Formula weight	941.42	2052.70	1172.31	1113.03	939.29
Temperature (K)	160.0(1)	130.1(2)	170(2)	199.9(1)	293(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	P21/c	P21/n	P21/n	P-1	P21/c
a (Å)	13.6678(5)	12.3800(4)	16.1795(6)	10.5410(6)	11.0075(15)
b (Å)	15.1649(10)	19.8689(8)	8.7028(4)	10.8892(5)	16.9543(16)
<i>c</i> (Å)	15.0978(6)	28.0926(9)	29.2014(12)	16.7211(7)	17.883(2)
α (º)	90.00	90.00	90.00	83.744(4)	90.00
<i>в</i> (º)	102.116(4)	90.574(3)	98.001(3)	71.929(4)	98.652(11)
γ (º)	90.00	90.00	90.00	76.436(4)	90.00
Volume (ų)	3059.6(3)	6909.8(4)	4071.7(3)	1772.38(15)	3299.5(7)
Ζ	4	4	4	2	4
D_{calc} (g cm ⁻³)	2.044	1.973	1.912	2.086	1.891
Absorption coefficient (mm ⁻¹)	6.522	5.934	5.519	6.476	6.131
F(000)	1808	3952	2256	1052	1808
Crystal size (mm)	0.15x0.20x0.40	0.05x0.10x0.15	0.10x0.17x0.22	0.03x0.10x0.35	0.08x0.12x0.17
artheta range for data collection (°)	1.93 to 25.03	1.79 to 25.03	2.31 to 25.00	1.92 to 25.03	2.22 to 25.00
Reflections collected	14322	29329	23210	12588	34784
Independent reflections	5402	12047	7144	6253	5798
	$[R_{int} = 0.0431]$	$[R_{int} = 0.0529]$	$[R_{int} = 0.1492]$	$[R_{int} = 0.0520]$	$[R_{int} = 0.2068]$
Absorption correction	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹
Data / restraints / parameters	5402/0/415	12047 / 66 / 858	7144 / 1 / 496	6253 / 30 / 436	5798 / 0 / 406
Goodness-of-fit on F ²	1.034	1.097	0.962	1.035	0.765
Final <i>R</i> indices [<i>I</i> >2σ(<i>I</i>)]	$R_1 = 0.0367$	$R_1 = 0.0665$	$R_1 = 0.0524$	$R_1 = 0.0483$	$R_1 = 0.0452$
	$wR_2 = 0.0732$	$wR_2 = 0.1365$	$wR_2 = 0.0956$	$wR_2 = 0.0948$	$wR_2 = 0.0908$
R indices (all data)	$R_1 = 0.0512$	$R_1 = 0.1017$	$R_1 = 0.1067$	$R_1 = 0.0607$	$R_1 = 0.0992$
	$wR_2 = 0.0794$	$wR_2 = 0.1531$	$wR_2 = 0.1130$	$wR_2 = 0.1013$	$wR_2 = 0.1034$
Largest difference peak and	1.52 and –0.67	3.28 and -1.65	1.29 and -1.30	1.79 and -1.44	1.20 and -2.83
hole (e Å ⁻³)					
CCDC No.	1585637	1585638	1585639	1585640	1585641

Table S2.X-ray crystal data and structure refinement for coordination polymers 5–9.

¹ G. M. Sheldrick, SADABS, Program for area detector adsorption correction, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.

Table S3.Summary of the experimental results.

Reagents	Product	Ligand coordination pattern / tecton conformation	Ag(I) coordination geometry	Network dimensionality and topology	Supramolecular interactions
Tecton 1 + Me₃SnCl (molar ratio 1:2)	Transmetallation - Ph_3BiCl_2 and $Me_3Sn[O(O)CC_5H_4N-4]$ (3)	$\mu_{\rm 2}\text{-bridging}$ (O1, N1) carboxylate in 3 / -	-	1-D linear chain in 3	-
Tecton 2 + Me₃SnCl (molar ratio 1:2)	Transmetallation - Ph_3BiCl_2 and $Me_3Sn[O(O)CC_5H_4N-3]$ (4)	$\mu_{\rm 2}\text{-bridging}$ (O1, N1) carboxylate in 4 / -	-	1-D <i>zig-zag</i> chain in 4	-
Tecton 1 + Ni[S ₂ P(O ⁱ Pr) ₂] ₂ (molar ratio 1:1)	Transmetallation - Ph₃Bi, [('PrO)₂P(S)S]₂ and Ni[O(O)CC₅H₄N-4]₂	-/-	-	-	-
Tecton 2 + Ni[S ₂ P(O ⁱ Pr) ₂] ₂ (molar ratio 1:1)	Transmetallation - Ph₃Bi, [('PrO)₂P(S)S]₂ and Ni[O(O)CC₅H₄N-3]₂	-/-	-	-	-
Tecton 1 + AgOTf (molar ratio 1:1)	$[Ag\{Ph_{3}Bi[O(O)CC_{5}H_{4}N-4]_{2}\}(OTf)] (\textbf{5})$	$\mu_{\rm 2}\text{-bridging}$ (N1, N2) of tecton 1 / -	see-saw [$\tau_{4 \text{ Ag(1)}} 0.63$]	1-D double chain built from near-linear chains	Ag…π contacts (1-D → 2-D)
Tecton 2 + AgOTf (molar ratio 1:1)	[Ag{Ph₃Bi[O(O)CC₅H₄N-3]₂}(OTf)]·CH₂Cl₂ (6 ·CH₂Cl₂)	μ_2 -bridging (N1, N2) of tecton 2 / <i>cis</i>	$\begin{array}{l} see-saw \left[\tau_{4} _{Ag(1A)} 0.48, \right. \\ \tau_{4} _{Ag(1AX)} 0.24, and \tau_{4} _{Ag(1B)} \\ 0.17, \tau_{4Ag(1BX)} 0.40, \\ respectively \end{bmatrix}$	2-D grid-like layer constructed from corrugated chains	intra-layer offset π…π contacts
Tecton 1 + AgSbF ₆ (molar ratio 1:1)	[Ag{Ph₃Bi[O(O)CC₅H₄N-4]₂}](SbF₀)·2THF (7 ·2THF)	μ_3 -bridging (N1, O2, N2) of tecton 1 / -	distorted trigonal- bipyramid [t _{5 Ag(1)} 90%]	2-D grid-like network built from linear chains	Ag…O contacts
Tecton 2 + AgSbF₅ (molar ratio 1:1)	$\label{eq:constraint} \begin{split} & [Ag\{Ph_3Bi[O(O)CC_5H_4N\text{-}3]_2\}](SbF_6)\cdotCH_2Cl_2\\ & (\boldsymbol{8}\cdotCH_2Cl_2) \end{split}$	$\mu_{\rm 2}\text{-bridging}$ (N1, N2) of tecton 2 / trans	Square-planar	1-D zig-zag chain	offset π…π stacking (1-D → 2-D)
Tecton 2 + AgNO₃ (molar ratio 1:1)	[Ag{Ph ₃ Bi[O(O)CC ₅ H ₄ N-3] ₂ }(NO ₃)]·CH ₂ Cl ₂ (9 ·CH ₂ Cl ₂)	μ_2 -bridging (N1, N2) of tecton 2 / trans	see-saw [$\tau_{4 \text{ Ag(1)}} 0.67$]	1-D wavy chain	Ag…Ag and π … π contacts (1-D \rightarrow 3-D)