Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting information

Hyper-cross-linked polymer supported rhodium: an effective

catalyst for hydrogen evolution from ammonia borane

Caili Xu^a, Min Hu^a, Qi Wang^a, Guangyin Fan^{a,*}, Yi Wang^a, Yun Zhang^{a,*}, Daojiang Gao^a, and Jian Bi^a

College of Chemistry and Materials Science, Sichuan Normal University,

Chengdu 610068, P.R. China

E-mail: zhangyun@sicnu.edu.cn and fanguangyin@sicnu.edu.cn.

This file includes Figure S1-S4.

Figure S1.

Fig.S1 the plots of mol H_2 /mol AB versus time for AB hydrolysis with HCP-PPh₃ and 200 mM AB at 298 K.

Figure S2.

Fig.S2 XRD patterns of HCP-PPh₃, HCP-PPh₃-Rh (III), and HCP-PPh₃-Rh. Compared with HCP-PPh₃ and HCP-PPh₃(III), the XRD pattern of the HCP-PPh₃-Rh catalyst shown in Fig.S2 displays a weak and broad peak situated at $2\theta = 41^{\circ}$ corresponded to the (111) plane of Rh because of the small size of Rh NPs, which matches well with the TEM results.

Figure S3.

Fig.S3 XPS spectra in the region of Rh 3d (after Rh₃Cl·nH₂O catalyzing AB hydrolysis).

As shown in Fig.S3, the binding energy of Rh⁰ 3d5/2 was 307.3 eV.

Figure S4.

Fig.S4 the plots of mol H_2 /mol AB versus time for AB hydrolysis with commercial

rhodium oxide at 298 K.