Boron calixphyrin complexes: exploring the coordination chemistry of a BODIPY/porphyrin hybrid

Aaron Chin Yit Tay,^a Benjamin J. Frogley,^a David C. Ware,^a Penelope J. Brothers^{*ab}

^aSchool of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand ^bMacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand

Supporting Information

Table of Contents

NMR spectra for synthesised compounds UV-vis absorbance spectra for synthesised compounds HRMS for synthesised compounds X-ray Crystallography data Kinetics data DFT Cartesian coordinates for TS calculations DFT Optimised structures for di-boron calixphyrins

Figure S1: ¹H NMR spectrum of 2a in CDCl₃ (400 MHz) Figure S2: ¹³C NMR spectrum of 2a in CDCl₃ (100 MHz) Figure S3: ¹¹B NMR spectrum of 2a in CDCl₃ (128 MHz) Figure S4: ¹⁹F NMR spectrum of **2a** in CDCl₃ (376 MHz) Figure S5: COSY NMR spectrum 2a in CDCl₃ Figure S6: NOESY NMR spectrum of 2a in CDCl₃ Figure S7: HSQC NMR spectrum of 2a in CDCl₃ Figure S8: HMBC NMR spectrum of 2a in CDCl₃ Figure S9: ¹H NMR spectrum of 2b in CDCl₃ (400 MHz) Figure S10: ¹¹B NMR spectrum of 2b in CDCl₃ (128 MHz) Figure S11: ¹⁹F NMR spectrum of **2b** in CDCl₃ (376 MHz) Figure S12: ¹H NMR spectrum of 2c in CDCl₃ (400 MHz) Figure S13: ¹³C NMR spectrum of 2c in CDCl₃ (100 MHz) Figure S14: ¹¹B NMR spectrum of 2c in CDCl₃ (128 MHz) Figure S15: ¹⁹F NMR spectrum of 2c in CDCl₃ (376 MHz) Figure S16: COSY NMR spectrum of 2c in CDCl₃ Figure S17: NOESY NMR spectrum of 2c in CDCl₃ Figure S18: HSQC NMR spectrum of 2c in CDCl₃ Figure S19: HMBC NMR spectrum of 2c in CDCl₃ Figure S20: ¹H NMR spectrum of 2d in CDCl₃ (400 MHz) Figure S21: ¹¹B NMR spectrum of 2d in CDCl₃ (128 MHz) Figure S22: ¹⁹F NMR spectrum of 2d in CDCl₃ (376 MHz) Figure S23: ¹H NMR spectrum of 3a in CDCl₃ (400 MHz) Figure S24: ¹¹B NMR spectrum of 3a in CDCl₃ (128 MHz) Figure S25: ¹⁹F NMR spectrum of **3a** in CDCl₃ (376 MHz) Figure S26: ¹H NMR spectrum of 4a in CDCl₃ (400 MHz) Figure S27: ¹¹B NMR spectrum of 4a in CDCl₃ (128 MHz)

Figure S28: ¹⁹F NMR spectrum of 4a in CDCl₃ (376 MHz) Figure S29: ¹H NMR spectrum of 5a in CDCl₃ (400 MHz) Figure S30: ¹¹B NMR spectrum of 5a in CDCl₃ (128 MHz) Figure S31: ¹⁹F NMR spectrum of 5a in CDCl₃ (376 MHz) Figure S32: ¹H NMR spectrum of 6a in CDCl₃ (400 MHz) Figure S33: ¹¹B NMR spectrum of 6a in CDCl₃ (128 MHz) Figure S34: ¹⁹F NMR spectrum of 6a in CDCl₃ (376 MHz) Figure S35: ¹H NMR spectrum of **6b** in CDCl₃ (400 MHz) Figure S36: ¹¹B NMR spectrum of 6b in CDCl₃ (128 MHz) Figure S37: ¹⁹F NMR spectrum of 6b in CDCl₃ (376 MHz) Figure S38: ¹H NMR spectrum of 6c in CDCl₃ (400 MHz) Figure S39: ¹¹B NMR spectrum of 6c in CDCl₃ (128 MHz) Figure S40: ¹⁹F NMR spectrum of 6c in CDCl₃ (376 MHz) Figure S41: ¹H NMR spectrum of 6d in CDCl₃ (400 MHz) Figure S42: ¹¹B NMR spectrum of 6d in CDCl₃ (128 MHz) Figure S43: ¹⁹F NMR spectrum of 6d in CDCl₃ (376 MHz) Figure S44: UV-vis absorbance spectrum of 2a in CH₂Cl₂ Figure S45: UV-vis absorbance spectrum of 2b in CH₂Cl₂ Figure S46: UV-vis absorbance spectrum of 2c in CH₂Cl₂ Figure S47: UV-vis absorbance spectrum of 2d in CH₂Cl₂ Figure S48: UV-vis absorbance spectrum of 3a in CH₂Cl₂ Figure S49: UV-vis absorbance spectrum of 4a in CH₂Cl₂ Figure S50: UV-vis absorbance spectrum of 5a in CH₂Cl₂ Figure S51: UV-vis absorbance spectrum of 6a in CH₂Cl₂ Figure S52: UV-vis absorbance spectrum of 6b in CH₂Cl₂ **Figure S53:** UV-vis absorbance spectrum of **6c** in CH₂Cl₂ Figure S54: UV-vis absorbance spectrum of 6d in CH₂Cl₂ Figure S55: HRMS of BF₂[H(DMPTCx)] (2a) Figure S56: HRMS of BF₂[H(DMPFPCx)] (2b) Figure S57: HRMS of BF₂[H(CHPTCx)] (2c) Figure S58: HRMS of BF₂[H(CHPFPCx)] (2d) Figure S59: HRMS of B₂OF₂(DMPTCx) (5a) Figure S60: HRMS of *B*₂*OF*₂(DMPTCx) (6a) Figure S61: HRMS of *B*₂*OF*₂(DMPFPCx) (6b) Figure S62: HRMS of *B*₂*OF*₂(CHPTCx) (6c) Figure S63: HRMS of *B*₂*OF*₂(CHPFPCx) (6d) Figure S64: Conversion of 3a into 2a as observed via ¹H NMR spectroscopy (40°C). Figure S65: Plots of ln(3a) versus time (hours) for conversion of 3a into 2a at 20°C, 30°C, 40°C, 50°C, 55°C and 60°C. Figure S66: Arrhenius plot of the isomerism of 3a into 2a. Figure S67: DFT optimised structures of B₂OF₂(DMPCx). Figure S68: DFT optimised structures of (BF₂)₂(DMPCx). Table S1: Details of collected X-ray data for compounds 2a and 4a. Table S2: Details of collected X-ray data for compounds 5a and 6b. **Table S3:** Relative Energies of the Optimised Structures of B₂OF₂ (Calix). Table S4: Relative Energies of the Isomers of (BF₂)₂(Calix).

Figure S1: ¹H NMR spectrum of 2a in CDCl₃ (400 MHz)

ppm

Figure S3: ¹¹B NMR spectrum of 2a in CDCl₃ (128 MHz)

Figure S5: COSY NMR spectrum 2a in CDCl₃

Figure S6: NOESY NMR spectrum of 2a in CDCl₃

Figure S7: HSQC NMR spectrum of 2a in CDCl₃

Figure S8: HMBC NMR spectrum of 2a in CDCl₃

Figure S10: ¹¹B NMR spectrum of 2b in CDCl₃ (128 MHz)

Figure S11: ¹⁹F NMR spectrum of **2b** in CDCl₃ (376 MHz)

Figure S12: ¹H NMR spectrum of 2c in CDCl₃ (400 MHz)

Figure S14: ¹¹B NMR spectrum of 2c in CDCl₃ (128 MHz)

Figure S15: ¹⁹F NMR spectrum of 2c in CDCl₃ (376 MHz)

Figure S16: COSY NMR spectrum of 2c in CDCl₃

Figure S17: NOESY NMR spectrum of 2c in CDCl₃

Figure S19: HMBC NMR spectrum of 2c in CDCl₃

Figure S20: ¹H NMR spectrum of 2d in CDCl₃ (400 MHz)

Figure S21: ¹¹B NMR spectrum of 2d in CDCl₃ (128 MHz)

ppm

Figure S23: ¹H NMR spectrum of 3a in CDCl₃ (400 MHz)

Figure S24: ¹¹B NMR spectrum of 3a in CDCl₃ (128 MHz)

Figure S25: ¹⁹F NMR spectrum of 3a in CDCl₃ (376 MHz)

Figure S26: ¹H NMR spectrum of 4a in CDCl₃ (400 MHz)

Figure S28: ¹⁹F NMR spectrum of 4a in CDCl₃ (376 MHz)

Figure S29: ¹H NMR spectrum of 5a in CDCl₃ (400 MHz)

Figure S30: ¹¹B NMR spectrum of 5a in CDCl₃ (128 MHz)

Figure S31: ¹⁹F NMR spectrum of 5a in CDCl₃ (376 MHz)

Figure S32: ¹H NMR spectrum of 6a in CDCl₃ (400 MHz)

Figure S33: ¹¹B NMR spectrum of 6a in CDCl₃ (128 MHz)

Figure S35: ¹H NMR spectrum of 6b in CDCl₃ (400 MHz)

Figure S36: ¹¹B NMR spectrum of 6b in CDCl₃ (128 MHz)

Figure S38: ¹H NMR spectrum of 6c in CDCl₃ (400 MHz)

Figure S39: ¹¹B NMR spectrum of 6c in CDCl₃ (128 MHz)

Figure S40: ¹⁹F NMR spectrum of 6c in CDCl₃ (376 MHz)

Figure S41: ¹H NMR spectrum of 6d in CDCl₃ (400 MHz)

Figure S42: ¹¹B NMR spectrum of 6d in CDCl₃ (128 MHz)

Figure S43: ¹⁹F NMR spectrum of 6d in CDCl₃ (376 MHz)

Figure S44: UV-vis absorbance spectrum of 2a in CH₂Cl₂

Figure S45: UV-vis absorbance spectrum of 2b in CH₂Cl₂

Figure S46: UV-vis absorbance spectrum of 2c in CH_2Cl_2

Figure S47: UV-vis absorbance spectrum of 2d in CH_2Cl_2

Figure S48: UV-vis absorbance spectrum of 3a in CH₂Cl₂

Figure S49: UV-vis absorbance spectrum of 4a in CH_2Cl_2

Figure S50: UV-vis absorbance spectrum of 5a in CH₂Cl₂

Figure S51: UV-vis absorbance spectrum of 6a in CH₂Cl₂

Figure S52: UV-vis absorbance spectrum of 6b in CH_2Cl_2

Figure S53: UV-vis absorbance spectrum of 6c in CH₂Cl₂

Figure S54: UV-vis absorbance spectrum of 6d in CH₂Cl₂

Figure S55: HRMS of BF₂[H(DMPTCx)] (2a)

Figure S56: HRMS of BF₂[H(DMPFPCx)] (2b)

Figure S57: HRMS of BF₂[H(CHPTCx)] (**2c**)

Figure S58: HRMS of BF₂[H(CHPFPCx)] (2d)

Figure S59: HRMS of B₂OF₂(DMPTCx) (5a)

Figure S60: HRMS of *B*₂*OF*₂(DMPTCx) (6a)

Figure S61: HRMS of *B*₂*OF*₂(DMPFPCx) (6b)

Figure S62: HRMS of *B*₂*OF*₂(CHPTCx) (6c)

Figure S63: HRMS of *B*₂*OF*₂(CHPFPCx) (6d)

Table S1: Details of collected X-ray data for compounds 2a and 4a.

	2a	4a
Empirical formula	C38 H35 B F2 N4	C39.50 H37.50 B2 Cl4.50 F6
		N4
Formula weight	596.51	863.38
Temperature	99(2) K	99(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Orthorhombic	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	Pccn
Unit cell dimensions	a = 11.9721(11) Å	a = 21.5460(9) Å
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	b = 14.8594(13) A	b = 31.9600(12) A
	$\beta = 90^{\circ}$ $\alpha = 17.2769(17)$ Å	$\beta = 90^{\circ}$
	$v = 90^{\circ}$	$v = 90^{\circ}$
Volume	3073.5(5) Å ³	8015.4(5) Å ³
Z, Calculated density	4, 1.289 Mg/m ³	8, 1.431 Mg/m ³
Absorption coefficient	0.084 mm ⁻¹	0.392 mm ⁻¹
F(000)	1256	3544
Crystal size	0.320 x 0.100 x 0.100 mm	0.44 x 0.05 x 0.04 mm
Theta range for data	1.808 to 27.959°	1.274 to 27.950°
collection		
Limiting indices	-15<=h<=15,	-28<=h<=28,
	-19<=k<=19,	-42<=k<=42,
	-21<=1<=22	-15<=1<=15
Reflections collected / unique	36247 / 7300 [R(int) =	109808 / 9554 [R(int) =
	0.110/]	0.1654]
Completeness to theta max	99.6%	100.0%
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	7300 / 0 / 426	9554 / 53 / 544
Goodness-of-fit on F2	1.004	0.999
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0628,	R1 = 0.0697,
	wR2 = 0.1280	wR2 = 0.1569
R indices (all data)	R1 = 0.1619,	R1 = 0.1827,
	wR2 = 0.1582	wR2 = 0.2183
Absolute structure parameter	0.9(7)	n/a
Extinction coefficient	0.021(2)	n/a
Largest diff. peak and hole	0.236 and -0.210 e A ⁻³	1.005 and -0.952
CCDC number	1587635	1587636

 Table S2: Details of collected X-ray data for compounds 5a and 6b.

	5a	<u>6b</u>
Empirical formula	C38 H34 B2 F2 N4 O	C36 H20 B2 F12 N4 O
Formula weight	622.31	774.18
Temperature	99(2) K	99(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Orthorhombic	Triclinic
Space group	$Cmc2_1$	P-1
Unit cell dimensions	a = 23.237(2) Å	a = 16.1693(10) Å
	$\alpha = 90^{\circ}$	$\alpha = 83.225(4)^{\circ}$
	b = 10.5234(10) Å	b = 17.8717(11) Å
	$\beta = 90^{\circ}$	$\beta = 79.773(4)^{\circ}$
	c = 12.0981(12) A	c = 18.1564(11) A $\alpha = 67.472(4)^{\circ}$
Volume	$\gamma = 90$ 2058 4(5) Å ³	$\gamma = 07.472(4)$ 4762(1(5)) Å ³
7 Coloulated density	$2338.4(3) \text{ A}^2$	$4/02.1(3) \text{ A}^2$
2, Calculated defisity	$4, 1.397 \text{ [Mg/III}^2$	0, 1.020 Mg/III ²
E(000)	1204	2240
r(000)	$0.28 \times 0.22 \times 0.05 \text{ mm}$	2340
Thete range for date	$0.38 \times 0.22 \times 0.03$ mm	$0.20 \times 0.12 \times 0.10$ mm
collection	2.124 to 27.734	1.141 10 27.928
Limiting indices	-30<=h<=30.	-21<=h<=21.
5	-13<=k<=11,	-23<=k<=23,
	-13<=1<=15	-23<=1<=23
Reflections collected / unique	9674 / 3154 [R(int) = 0.0821]	151819 / 22188 [R(int) =
		0.1883]
Completeness to theta max	99.9%	99.3%
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	3154 / 1 / 223	22188 / 0 / 1475
Goodness-of-fit on F2	0.984	0.943
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0579, wR2 = 0.1212	R1 = 0.0767, wR2 = 0.1676
R indices (all data)	R1 = 0.1062, wR2 = 0.1395	R1 = 0.3002, $wR2 = 0.2546$
Absolute structure parameter	n/a	n/a
Extinction coefficient	n/a	0.0022(2)
Largest diff. peak and hole	0.303 and -0.254e Å ⁻³	0.530 and -0.329
CCDC number	1587634	1587637

Figure S64: Conversion of 3a into 2a as observed via ¹H NMR spectroscopy (40°C).

Figure S65: Plots of ln(3a) versus time (hours) for conversion of 3a into 2a at 20°C, 30°C, 40°C, 50°C, 55°C and 60°C.

Figure S66: Arrhenius plot of the isomerism of **3a** into **2a**.

DFT Optimised Cartesian Coordinates for TS Calculations

3a

С	-2.54734600	-1.45918600	0.10887900
С	-3.13579800	-0.20622700	-0.01350900
С	-4.47520800	-0.09468200	-0.64729500
С	-5.52319100	-0.97532000	-0.32685900
Н	-5.35823800	-1.74347600	0.42095700
С	-6.77319700	-0.84792600	-0.92853000
Н	-7.57125900	-1.53129700	-0.64889800
С	-7.02413700	0.15267100	-1.87590800
С	-8.36838000	0.26722800	-2.55317000
Н	-9.16270300	-0.17518300	-1.94507900
Н	-8.36905900	-0.25269600	-3.51955700
Н	-8.63102800	1.31144000	-2.74890200
С	-5.98178500	1.03740100	-2.18810800
Н	-6.15104900	1.82663900	-2.91653400
С	-4.73597800	0.92658000	-1.57976200
Н	-3.94329600	1.62242700	-1.83398000
С	-2.60895500	1.03071800	0.51137600
С	-3.40531200	1.97163300	1.18516800
Н	-4.47152700	1.87917300	1.33387500
С	-2.56181600	2.95678700	1.70488500
Н	-2.85073900	3.80914600	2.30302900
С	-1.26861800	2.63397100	1.29310600
С	-0.02169900	3.47693100	1.45155300
С	-0.09229300	4.68513400	0.46672800
Н	-0.14508200	4.32564200	-0.56200800
Н	0.78986700	5.32407700	0.57655700
Н	-0.98418300	5.28130200	0.67998500
С	0.05755800	4.01164200	2.90378500
Н	-0.82700100	4.61079800	3.13393000
Н	0.93311700	4.65324200	3.03703700
Н	0.11350600	3.19172600	3.62464500
С	1.23414600	2.69377000	1.14705200
C	2.56246700	3.11325500	1.36739800
Н	2.86993000	4.00909700	1.88650700
С	3.38100200	2.15968200	0.79371600
Н	4.46004400	2.12763300	0.81715300
С	2.55162400	1,12261900	0.27771600
Č	3.09216700	-0.12491100	-0.12176300
С	4.46855900	-0.05524100	-0.69044600
C	4.72427600	0.79117600	-1.78318800
H	3,90898000	1.36952500	-2.20513200
С	5,99935600	0.87487800	-2.33452400
H	6.16840000	1.52555500	-3,18854800
C	7.06881500	0.13933200	-1.80531000
Ċ	8.44514800	0.21928700	-2.41925100
H	8.54843400	-0.49445500	-3.24609500
Н	9.22451000	-0.01429800	-1.68836100
Н	8.64522200	1.21526800	-2.82527200
С	6.81652600	-0.68473200	-0.70006200
Н	7.63374000	-1.24621900	-0.25470800
С	5.53972500	-0.78924600	-0.15395300
Н	5.37358500	-1.41852300	0.71415100
С	2.53660900	-1.41005400	0.05041400
С	3.09301900	-2.65937400	-0.33688700
Н	3.99195000	-2.78154800	-0.92084800

С	2.28250900	-3.67000000	0.16419000
Н	2.42733000	-4.73365300	0.05182800
С	1.21408100	-3.05235100	0.84471800
С	-0.01277400	-3.64196800	1.51579600
С	-0.02683400	-3.25339600	3.01619800
H	0.88161600	-3.60542700	3.51620500
Н	-0.89253300	-3 71140200	3 50435500
Н	-0 10793900	-2 17218800	3 13706000
C	-0.00437400	-5 17358100	1 38422500
н	0.04001700	-5 49271500	0.33923200
н	-0.91272400	-5 59049000	1 82745900
н	0.85445700	-5.60226600	1 90986800
C C	-1 21364200	-3.01984800	0.80588700
C	2 11150000	3 66213100	0.00500700
с u	2 10011400	4 70258400	-0.12/33/00
П	-2.10911400	-4.70238400	-0.42191000
	-2.93/91/00	-2.07839200	-0.30048000
п	-3./4948/00	-2./0088200	-1.29038000
B	-0.08237000	1.1/200800	-0.3/342200
N	-1.45952600	-1./2923900	0.94068800
N	-1.280/4300	1.46170900	0.58609400
N	1.21615400	1.49858500	0.50825900
Ν	1.39308300	-1.71596100	0.78087100
Н	0.61336100	-1.08579300	0.96955600
F	-0.03379100	-0.11520300	-0.84823800
F	-0.10099000	2.08586400	-1.42844400
3ai			
С	-2.60857100	-1.38567500	0.28278000
С	-3.12027900	-0.11558500	0.01629300
C	-4.36019600	-0.06240400	-0.81392100
C	-5.48092300	-0.83848600	-0.47547600
H	-5 44141200	-1 45976300	0 41315600
C	-6 63683800	-0.80623400	-1 25350100
Ĥ	-7 49292100	-1 40973800	-0 96188700
C	-6 71563500	-0.00855100	-2 40130900
C C	-7 97580900	0.04450900	-3 23137900
н	-8 57835900	-0.85931500	-3 10302800
н	-7 74890500	0.15328500	-4 29654500
н	-8 60323400	0.89848300	-2 94618800
C C	-5 59/19800	0.76124900	-2.74010000
ч	-5 62328700	1 37930700	-3 63739600
C II	4 44303100	0.74560800	-5.05759000
U U	-4.44505100	1 24680100	-1.901/0900
П	-3.38040000	1.34089100	-2.24773100
C	-2.00909200	2 24454000	0.416//900
	-3.39930300	2.34434900	0.301/0300
П	-4.40389500	2.37834200	0.32441100
	-2.38104300	3.41399700	0.87003200
П	-2.88000000	4.44079600	1.02252000
C	-1.28654200	2.90828700	0.99349800
C	-0.01/99000	3.63108000	1.41260300
U II	-0.06095700	5.1000000	0.94414600
H	-0.11//6500	5.16903500	-0.14539400
H	0.82698600	5.64136300	1.28233400
H	-0.93089200	5.60872600	1.36673500
C	0.07529400	.59222700	2.97276800
H	-0.80180100	4.08182700	3.40584300
H	0.97523100	4.11235200	3.31660600
H	0.10783300	2.55913000	3.32559400
C	1.22718400	2.94918600	0.87847000

C	2.51872600	3.48817700	$\begin{array}{c} 0.67672300\\ 0.81385600\\ 0.27908700 \end{array}$
H	2.80867300	4.51922900	
C	3.32950600	2.44107500	
H	4.38595400	2.48798600	0.06335200
C	2.54710600	1.24643900	0.25323400
C	3.07623400	-0.04063600	-0.06039600
C	4.34998300	-0.03157000	-0.83605100
C	4.47420400	0.72071000 1.29697000	-2.01744700
H	3.62541300		-2.36985700
С Н С	5.66045900 5.72653400 6.76072000	0.71280100 1.29219300	-2./4494/00 -3.66223900
С	8.04666100 8.01964300	-0.05223500 -0.84373000	-3.12216500
H	8.91691200	-0.24104000	-2.48710300
H	8.20573400	0.89439900	-3.64677900
C	6.64755000	-0.77269700	-1.13537500
H	7.49727800	-1.34593500	-0.77375800
C	5.45837000	-0.78437900	-0.41132100
H	5.38836000	-1.35945900	0.50611100
C	2.57998600	-1.33683200	0.23368000
C	2.84836400	-2.53997600	-0.48422800
H	3.55610400	-2.63051800	-1.29405000
C	1.98899300	-3.52281100	-0.01642700
H C C	1.19924800	-4.53725600 -2.94723400 -2.40012200	-0.37697600 1.00894800
С	-0.02202400 -0.03270100 0.88839800	-3.01755300	3.21756300
H	-0.87986000	-3.47521800	3.73672500
H	-0.15806700	-1.93633100	3.28268100
C	-0.02269100	-5.02814200	1.69934000
H	-0.00262200	-5.41055200	0.67534800
H	-0.92566700	-5.41342700	2.18104500
H	0.84661200	-5.43080400	2.22872100
C	-1.23564000	-2.90509500	1.00144700
C	-1.99844600	-3.53474800	-0.06461600
H	-1.88624300	-4.54278300	-0.44108400
C	-2.88408700	-2.58857100	-0.49607400
H	-3.59362200	-2.67565000	-1.30632700
B	-0.02440700	0.73064000	0.79000400
N	-1.61323700	-1.66254800	1.21217200
N N	-1.29874400	1.56920900	0.73715500
N	1.61324100	-1.67695000	1.16871600
H	1.12271100	-1.00314500	1.75977100
F	0.12538700	0.22607300	2.12737400
F	0.00261200	-0.19151800	-0.23080800
TS			
C C	2.79985400	-1.29147700	-0.21439600 0.12609500
Č C	4.61326100	0.01481400	0.84755400
н С	5.67544800	-1.14847100 -0.58654500	-0.62036400
н	7.83086600	-1.08499500	0.57996600
С	7.09128400	0.08688700	
Č	8.41702000	0.15148800	2.94907900

Н	8.28128100	0.24897800	4.03013800
Н	9.00605000	1.01541800	2.61608800
Н	9.01924100	-0.74238200	2.76104000
С	5.95431700	0.72015100	2.74969500
Н	6.02019700	1.23795100	3.70335100
С	4.73883400	0.69384200	2.07070900
H	3 86950000	1 18371900	2 49702200
C	2 67931300	1 20966000	-0 16811600
Č	3 28061500	2 47737300	-0.09419700
н	4 29474900	2 66478100	0 22396900
C	2 35459000	3 41950500	-0 53816700
ч	2.53457000	48472800	-0.55610700
II C	1 18166200	2 72852800	-0.00430400
C	0.07152000	2.75852800	-0.88731400
C	-0.0/153000	3.30707000	-1.493/2100
C	-0.05532700	4.88997900	-1.23995500
H	-0.06365000	5.12199200	-0.1/126600
H	-0.92862900	5.35686000	-1./0143000
H	0.82722600	5.35119700	-1.68960100
С	-0.04351700	3.14036300	-3.04102200
Н	0.86215700	3.58303900	-3.46784300
Н	-0.91449700	3.61698600	-3.50259200
Н	-0.06152100	2.07674300	-3.27771200
С	-1.36992300	2.77256200	-0.96276400
С	-2.63336400	3.44329600	-0.76590500
Н	-2.84615900	4.49057100	-0.92639300
С	-3.51043200	2.48294700	-0.33583500
H	-4.56068000	2,60947300	-0.11671400
C	-2.78493100	1 23086000	-0 28830700
C	-3 32724300	-0.01123700	0.07672800
C	-4 61744600	-0.02846300	0.81529400
C	-4.84728600	0.82666900	1 00785000
U U	4 05082000	1 50207600	2 22410200
П	-4.03982000	0.70502500	2.22419200
	-0.03037000	0.79505500	2.39098300
П	-6.20403200	1.43939100	3.4445/800
C	-7.08225600	-0.08395600	2.22425900
C	-8.38210800	-0.13154900	2.99005600
Н	-9.20843300	-0.46503300	2.35550800
Н	-8.64219700	0.84895700	3.40008800
Н	-8.31722600	-0.82965300	3.83397800
С	-6.85228200	-0.93748900	1.13651200
Н	-7.63461100	-1.62312700	0.82087500
С	-5.64120300	-0.92101700	0.45092700
Н	-5.48644800	-1.58760800	-0.39102200
С	-2.73256400	-1.29995100	-0.14098600
С	-2.80421500	-2.44184800	0.68300200
H	-3.44898000	-2.54607100	1.54305300
C	-1 83724600	-3 35133900	0 24079700
н	-1 61017500	-4 30915000	0.68440000
C	-1 19050100	-2 78606400	-0.87019700
C	0.03875000	-3 27628700	-1 63935600
C	0.00805100	2 85805300	2 12053600
	-0.00805100	-2.83803300	-3.12933000
п U	-0.9332/100	-3.21240300	-3.37040300
11 11	0.03377000	-3.31100100	-3.03/84/00
П	0.0084/000	-1.//9/3800	-5.25519500
U	0.06031600	-4.81921800	-1.58/20600
H	0.09640300	-5.19941000	-0.56348300
Н	0.93466200	-5.20369600	-2.12007000
Н	-0.83664500	-5.22130800	-2.06625200
С	1.31512300	-2.71117400	-0.97432200
С	2.30831700	-3.48490500	-0.25973600

Н	2.31134300	-4.55699100	-0.12461300
С	3.23990500	-2.59755900	0.21208300
Н	4.11025700	-2.81415600	0.81426100
В	0.34619800	0.30347400	-0.80384300
Ν	1 63533300	-1 42088000	-0 95800000
N	1 37823200	1 39617900	-0 66607400
N	-1 46504000	1 48509400	-0 69479400
N	-1 79214900	-1 59229400	-1 10980800
Н	-1 44871200	-0.91429500	-1 77646200
F	-0.04126200	0.06998400	-2 11518800
F	-0.05661400	-0 28576200	0 34291200
- 		0.200,0200	0.0 .2 / 1200
281			
С	-2.90514300	-1.25049300	0.01965700
С	-3.51508800	-0.00313200	-0.22845500
С	-4.86377900	0.03702600	-0.84608300
С	-5.93810700	-0.67027000	-0.28106700
Н	-5.78162600	-1.23822700	0.63024400
С	-7.20174200	-0.62687600	-0.86378900
Н	-8.01929700	-1.17419400	-0.40153100
С	-7.43947200	0.11125900	-2.03120300
С	-8.81758100	0.17466800	-2.64363600
Н	-9.41301900	0.97751700	-2,19127800
Н	-9 36644600	-0.75961200	-2 49272400
Н	-8 76938300	0.37147300	-3 71835500
C	-6 36312600	0.80670400	-2 59722100
н	-6 51483600	1 37463500	-3 51144100
C	-5.09815200	0.77901200	-2.01518300
ч	-4 27555200	1 31145600	-2.01310300
II C	-4.27555200	1.20625400	-2.48120000
C	-2.87404000	2 54187500	0.10343000
	-5.55795100	2.3418/300	0.01909400
П	-4.30734400	2.84904400	-0.34311300
C II	-2.32929400	3.3512/600	0.50889600
H	-2.36289500	4.42593100	0.58/85600
C	-1.24216900	2.52634900	0.91459000
C	0.03439100	3.04898800	1.62199000
C	-0.00265000	4.59596500	1.59385900
H	-0.03983800	4.99401800	0.57592100
Н	0.89527200	4.98651200	2.07839600
Н	-0.86627700	4.97599100	2.14576500
С	-0.00893500	2.63169500	3.12046500
Н	-0.94626800	2.96705300	3.57758200
Н	0.82165000	3.11125800	3.64797700
Н	0.07942700	1.55595200	3.23294000
С	1.37264100	2.59040900	1.00407000
С	2.32454700	3.43182900	0.28673000
Н	2.22482500	4.48516300	0.06493300
С	3.37866700	2.62714500	-0.04575400
Н	4.27547700	2.91032400	-0.57734000
С	3.02810700	1.29510900	0.41583700
С	3.62462300	0.08388900	0.07533000
С	4.89778000	0.07885800	-0.70267300
С	5.01134500	0.71247600	-1.94927300
Н	4.14336100	1.20487100	-2.37484400
С	6.21321500	0.68832100	-2.65500800
Ĥ	6.27044700	1,17715300	-3 62452500
Ċ	7.34313100	0.03756400	-2 14458900
Č	8 65368400	0.04399700	-2,89462100
Ĥ	8.49843100	0.15890900	-3.97140700

Н	9 21481100	-0.88093100	-2 72962100
11	0.20241000	0.87244200	2.72902100
П	9.29341900	0.87344200	-2.30703200
C	7.22307200	-0.60661300	-0.90593000
Н	8.08147200	-1.12762400	-0.48877300
С	6.02259200	-0.59529500	-0.20009500
Н	5.95178000	-1.10512300	0.75569500
С	3.03121900	-1.21169200	0.29428900
С	3 25258600	-2 38932700	-0 44470900
ч	4 05997800	-2 54705600	-1 1/386000
II C	2 20081000	2 27055000	-1.1+300000
C	2.20081000	-3.27033000	-0.10243300
H	2.06/84000	-4.25523000	-0.58386600
С	1.34517000	-2.64398800	0.75700300
С	0.03203100	-3.18384100	1.34813300
С	-0.02137800	-2.95989300	2.88694300
Η	0.85178700	-3.42968400	3.35037300
Н	-0.92131000	-3.43162500	3.29458400
Н	-0.03844400	-1.90620000	3.15023500
C	0.03945000	-4 71919600	1 13918100
й	0.00728900	-4 99574900	0.08238900
н	-0.81708200	-5 17744400	1 63000000
11	-0.01/08200	5 14028200	1.03990000
п	0.94/9/000	-3.14028200	1.57509800
C	-1.265/9800	-2.62/01/00	0.69820200
C	-2.31912300	-3.41847500	0.16364400
Н	-2.32748300	-4.49493700	0.09994800
С	-3.32893000	-2.57132200	-0.26418500
Н	-4.26119700	-2.84874600	-0.73288200
В	-0.75160300	-0.06177000	0.74954300
Ν	-1.64799200	-1.32426800	0.60821500
Ν	-1 59716700	1 23407300	0 66941200
N	1 81999400	1 35941800	1 10974300
N	1 00/11//00	1 /3705800	1.10774300
	1.50414400	-1.43793800	1.03004700
H	1.45606500	-0.67030200	1.55225600
F	-0.19253000	-0.13836200	2.03/29500
F	0.12057900	-0.07873200	-0.32082000
2a			
С	2.80364300	-1.18772500	-0.10481600
С	3 35592900	0.06080000	0 23344400
Č	4 56787900	0.09686700	1.09153900
Č	5 74411200	-0 54649600	0.67422300
	5 76061200	1 05259000	0.07422500
	5.70001200	-1.05558000	-0.26510700
U U	0.88/08300	-0.52092100	1.40893800
Н	7.78920600	-1.01/62300	1.11959800
C	6.89659400	0.13148700	2.70869100
С	8.14519600	0.17718900	3.55589900
Н	8.78105200	-0.69501400	3.37893800
Н	7.90438600	0.21243700	4.62243200
Н	8.74368500	1.06810500	3.32819800
С	5.71505600	0.75661300	3.12904000
Н	5.68731700	1.25212100	4.09616800
С	4 57013100	0 74658900	2 33613600
й	3 66067600	1 21788100	2.55015000
C	2 72856200	1 25007000	_0 160/0000
C	2.72630200	2 57029400	-0.10040000
	2.99/02000	2.3/938400	0.23/30400
П	3.82043/00	2.89705600	0.8594/900
C	1.99258800	3.3610/500	-0.29224600
Н	1.87563700	4.42329800	-0.15391300
C	1.12436100	2.52678700	-1.04898200
			1

С	-0.10083300	4.60393400	-1.72615100
Н	-0.16818500	5.00329500	-0.71084500
Н	-0.94714600	4.99541100	-2.29497600
Н	0.81227500	4.98231300	-2.19329200
С	-0.18255200	2.65903900	-3.26074200
Н	0.72614900	2.99701800	-3.77027200
Н	-1.03995500	3.15392400	-3.72737300
Н	-0.28576600	1.58833400	-3.39623900
С	-1.39905700	2.57094700	-1.03976000
С	-2.55555100	3.38655800	-0.70104500
Н	-2.68099600	4.44445100	-0.88339000
С	-3.45890500	2.54629400	-0.11034100
Н	-4.44836900	2.79168900	0.24844100
С	-2.84501700	1.23473900	-0.10414500
С	-3.40056800	0.02424200	0.30113600
С	-4.70974000	0.02099300	1.00698200
С	-4.91307900	0.81760400	2.14551000
Н	-4.09480200	1.42489000	2.51822700
С	-6.14010900	0.82109300	2.80529900
Н	-6.26791400	1.44162000	3.68881500
С	-7.20943200	0.03733900	2.35411700
С	-8.52926000	0.02111200	3.08718500
Н	-8.56598000	-0.79646400	3.81815500
Н	-9.36781700	-0.12290800	2.39913400
Н	-8.69507200	0.95368700	3.63430100
С	-7.00715700	-0.75198000	1.21375200
Н	-7.82455700	-1.35914500	0.83251100
С	-5.78073900	-0.76855100	0.55489600
Н	-5.65229200	-1.37906400	-0.33290500
С	-2.77813100	-1.24706800	0.06347600
C	-3.12254200	-2.52979200	0.52758900
Н	-3.95699600	-2.76042700	1.17252300
С	-2.17653400	-3.43154700	0.02358300
H	-2.15792300	-4.49674800	0.19531400
С	-1.25581200	-2.70270900	-0.74712600
Ċ	-0.02130800	-3.20111200	-1.50275800
Č	-0.13522700	-2.94912800	-3.03116600
H	-0.99503700	-3.50448200	-3.41796600
Н	0.76501700	-3.32058800	-3.53143500
Н	-0.25897300	-1.90123400	-3.27973800
С	0.04051500	-4.73979300	-1.33980200
H	0.05766600	-5.05309100	-0.29391300
Н	0.92845800	-5.13768000	-1.83748300
Н	-0.83883800	-5.18750600	-1.80877900
C	1 24595900	-2 59113900	-0 87390900
Č	2.12462600	-3.32101100	-0.03442900
H	2 03243300	-4 36586700	0 21263800
C	3 09329200	-2.45581700	0.43959500
Н	3 88995400	-2 67332700	1 13523200
B	1 38369100	-0.05278000	-1 86171200
N	1 67343100	-1 29274200	-0.92150600
N	1 58534400	1 24539500	-0 97448900
N	-1 57606900	1 31634500	-0 68262900
N	-1 64118300	-1 40214000	-0 70747900
Н	-1 16960800	-0 59111300	-1 11361700
F	2 32761400	-0.03518700	-2.87273600
F	0 10317500	-0 12985700	_2 38765900
	0.1001/000	0.12/05/00	2.30703700

Figure S67: DFT optimised structures of B₂OF₂(DMPCx).

Ligand	Isomer	Bonding Site	Relative Energy (kcal mol⁻¹)
DMPCx	Cisoid	Dipyrrin	0.00
DMPCx	Transoid	Dipyrrin	3.72
DMPCx	Transoid	Dipyrromethane	11.12
DMPCx	Cisoid	Dipyrromethane	21.88
DMPFPCx	Cisoid	Dipyrrin	0.00
DMPFPCx	Transoid	Dipyrrin	3.83
DMPFPCx	Transoid	Dipyrromethane	9.91
DMPFPCx	Cisoid	Dipyrromethane	19.87
CHPCx	Cisoid	Dipyrrin	0.00
CHPCx	Transoid	Dipyrrin	4.05
CHPCx	Transoid	Dipyrromethane	14.84
CHPCx	Cisoid	Dipyrromethane	27.57

Table S3: Relative Energies of the Optimised Structures of B₂OF₂ (Calix).

Figure S68: DFT optimised structures of (BF₂)₂(DMPCx).

Ligand	Isomer	Bonding Site	Relative Energy (kcal mol⁻¹)
DMPCx	Transoid	Dipyrromethane	0.00
DMPCx	Transoid	Dipyrrin	7.73
DMPCx	Cisoid	Dipyrrin	11.91
DMPCx	Cisoid	Dipyrromethane	56.22
DMPFPCx	Transoid	Dipyrromethane	0.00
DMPFPCx	Transoid	Dipyrrin	7.65
DMPFPCx	Cisoid	Dipyrrin	12.41
DMPFPCx	Cisoid	Dipyrromethane	54.09
CHPCx	Transoid	Dipyrromethane	0.00
CHPCx	Cisoid	Dipyrrin	4.74
CHPCx	Transoid	Dipyrrin	5.57
CHPCx	Cisoid	Dipyrromethane	55.52

Table S4:	Relative End	ergies of the	Isomers of	(BF ₂) ₂ (Calix)
-----------	--------------	---------------	------------	---