Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

Synthesis and Reactivity of an Anionic Allenylidene Complex

Anthony F. Hill* and Richard A. Manzano

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Experimental Procedures

General Considerations

Unless otherwise stated, experimental work was carried out at room temperature under a dry and oxygen-free nitrogen atmosphere using standard Schlenk techniques with dried and degassed solvents. NMR spectra were recorded on a Bruker Avance 700 (¹H at 700.2 MHz, ¹³C at 176.1 MHz) spectrometers or a Bruker Avance 800 with cryoprobe (¹H at 800.1 MHz, $^{13}C{^{1}H}$ at 201.2 MHz). Chemical shifts (δ) are reported in ppm and referenced to the solvent peak (CHCl₃: δ_{H} = 7.26, δ_{C} = 77.0) with coupling constants given in Hz. The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. Where applicable, the stated multiplicity refers to that of the primary resonance exclusive of ¹⁸³W satellites. In some cases, distinct peaks were observed in the ¹H and ¹³C{¹H} NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal places for ¹H NMR, 1 decimal place for ¹³C NMR) they are reported as having the same chemical shift (See actual spectra). Infrared spectra were obtained using a Perkin-Elmer FT-IR/FIR Frontier spectrometer. The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s (strong), m (medium), w (weak), sh (shoulder) and br, (broad). Elemental microanalytical data were obtained from the London Metropolitan University microanalytical service. Highresolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile as the matrix. Data for X-ray crystallography were collected with an Agilent Xcalibur CCD diffractomer using Mo-K α radiation (λ = 0.71073 Å) or an Agilent SuperNova CCD diffractometer using Cu-K α radiation

^{a.} Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.

+Corresponding author: Email: a.hill@anu.edu.au

 $\rm CCDC\ 1559203$ - 1559205 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

This journal is © The Royal Society of Chemistry 20xx

 $(\lambda = 1.54184 \text{ Å})$. CCDC 1559203 - 1559205 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. The synthesis of the complex $[W(\equiv CCCSiMe_3)(CO)_2Tp^*]$ (1a) has been described previously.¹ The abbreviation 'pz' is used to refer to the pyrazolyl rings on the hydridotris(3,4-dimethylpyrazolyl)borate (Tp*) ligand.

Synthesis of W(=CCH=CMeSiMe₃)(CO)₂(Tp*) E/Z-3

A red solution of [W(=CC=CSiMe₃)(CO)₂(Tp*)] (1a: 200 mg, $(0.309 \text{ mmol})^1$ in tetrahydrofuran (10 mL) at 0°C and was treated with methyllithium (0.2 mL, 1.6 M solution in Et₂O, 0.320 mmol) and was stirred at 0°C for 10 minutes resulting in a deep green coloured solution. The dark green solution was quenched with distilled water (10 mL) at 0°C instantly turning the solution red, which is then warmed to r.t. and stirred for an additional 20 minutes yielding a red solution. The compound was extracted with dichloromethane (10 mL) and the organic layer collected and dried over MgSO₄. The extract was then filtered and all volatiles were removed to give a dark red residue that was purified by column chromatography on silica gel. Elution with dichloromethane:petroleum spirits (40-60°C) (1:9) provided an orange band that was collected and freed of volatiles to give an orange solid powder that was shown to be а mixture of $\{E, Z\}$ -[W(≡CCH=CMeSiMe₃)(CO)₂(Tp*)] isomers in a E:Z::45:55 ratio. Yield 131 mg (0.198 mmol, 64 % Yield). Crystals suitable for single crystal X-ray crystallographic study were grown from a solution in ⁿpentane stored at –20 °C.

Crystal data for $E-C_{24}H_{35}BN_6O_2SiW$: $M_w = 662.33$, monoclinic, $P2_1/c$, a = 9.3555(3) Å, b = 14.6772(3) Å, c = 20.6011(4) Å, $\beta = 89.688(2)^\circ$, V = 2828.74(12) Å³, Z = 4, $\rho_{calcd} = 1.555$ Mg m⁻³, $\mu = 4.16$ mm⁻¹, T = 150(2) K, red block, $0.35 \times 0.20 \times 0.11$ mm, 5791 independent reactions, F^2 refinement, R = 0.052, wR = 0.064 for 5791 reflections ($I > 2\sigma(I)$, $2\theta_{max} = 52.8^\circ$), 334 parameters (CCDC 1559203).

Data for {**Z**}-[**W**(=**CCH=CMeSiMe₃)(CO**)₂(**Tp***) **Z**-3 - IR (DCM) v_{CO} 1967 vs, 1875 vs cm⁻¹. ¹H NMR (CDCI₃, 25°C, 700.2 MHz): δ_{H} = 7.04 (q, 1 H, H β , ⁴J_{HH} = 1.4 Hz), 5.87 (2 H), 5.75 (1 H) (s × 2, 3 H, pzH), 2.55 (6 H), 2.41 (3 H), 2.39 (6 H), 2.33 (3 H) (s × 4, 18 H, pzCH₃), 1.67 (d, 3 H, Me γ , ⁴J_{HH} = 1.4 Hz), -0.02 (s, 9 H, SiCH₃). ¹³C{¹H} NMR (CDCI₃, 25°C, 176.1 MHz): δ_{C} = 280.2 (W=C, ¹J_{WC} = 183.0), 224.5 (WCO, ¹J_{WC} = 166.4), 152.2 [C⁵(pz)], 151.6 [C⁵(pz)] 151.1 (C β , ²J_{WC} = 46.1), 148.9 (C γ , ¹J_{SiC} = 62.5 Hz), 145.0 [C³(pz)], 144.2 [C³(pz)], 106.5 [C⁴(pz)], 106.3 [C⁴(pz)], 23.8 (Me γ), 16.6 (pzCH₃), 15.3 (pzCH₃), 12.9 (pzCH₃), 12.7 (pz-CH₃) – 0.72 (SiCH₃). MS (ESI, high resolution): m/z (%) 662.2225. Calcd for C₂₄H₃₅¹¹B₁N₆O₂²⁸Si₁¹⁸⁴W₁: 662.2193 [M]⁺. Anal. found: C, 43.49; H, 5.46; N, 12.52%. Calcd for C₂₄H₃₅B₁N₆O₂Si₁W₁: 43.52; H, 5.33; N, 12.69%.

Data for *E*-[W(≡CCH=CMeSiMe₃)(CO)₂Tp* *E*-3 - ¹H NMR (CDCl₃, 25°C, 700.2 MHz): δ_{H} = 6.43 (q, 1 H, Hβ, ⁴J_{HH} = 1.4 Hz), 5.88 (2 H), 5.77 (1 H) (s × 2, 3 H, pzH), 2.53 (6 H), 2.42 (3 H), 2.38 (6 H), 2.34 (3 H) (s × 4, 18 H, pzCH₃), 1.96 (m, 3 H, Meγ, ⁴J_{HH} = 1.4 Hz), -0.08 (s, 9 H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 25°C, 176.1 MHz): δ_{C} = 282.6 (WC, ¹J_{WC} = 183.7), 225.7 (WC, ¹J_{WC} = 167.3), 152.3, 152.0 [C⁵(pz)], 149.9 (Cγ, ¹J_{SiC} = 69.0), 145.7 (Cβ, ²J_{WC} = 42.4 Hz), 145.0, 144.4 [C³(pz)], 106.6, 106.4 [C³(pz)], 22.5 (Meγ), 16.4 (pzCH₃), 15.8 (pzCH₃), 12.7 (pzCH₃), -2.29 (SiCH₃).

Synthesis of W(=CCMe=CMeSiMe₃)(CO)₂(Tp*) E/Z-4

A red solution of [W(≡CCCSiMe₃)(CO)₂(Tp*)] (1a: 200 mg, 0.309 mmol) in tetrahydrofuran (10 mL) at 0°C was treated with methyl lithium (0.20 mL, 1.6 M solution in Et₂O, 0.32 mmol) and stirred at 0° C for 10 minutes resulting in a deep green coloured solution. The dark green solution was treated with iodomethane (0.02 mL, 2.28 g cm⁻¹, 0.320 mmol) at 0°C and was stirred for 10 minutes, then warmed up to r.t. and stirred for 20 minutes yielding an orange solution. All volatiles were removed to provide a dark orange solid residue. The residue was purified on silica gel with dichloromethane:petroleum spirits (40-60°C) (1:9) as the eluent providing an orange band that was collected and freed of volatiles to give an orange solid compound as a mixture of E_{z} -[W(=CCMe=CMeSiMe_3)(CO)₂(Tp*)] isomers in a E:Z::9:91 ratio. Yield 141 mg (0.207 mmol, 67% Yield). Crystals suitable for single x-ray crystallographic study were grown from a solution n pentane stored at -20°C.

Crystal data for C₂₅H₃₇BN₆O₂SiW: $M_w = 676.35$, monoclinic, $P2_1/c$, a = 12.6360(4) Å, b = 14.8272(5) Å, c = 16.3046(6) Å, $\beta = 109.839(4)^\circ$, V = 2873.47(18) Å³, Z = 4, $\rho_{calcd} = 1.563$ Mg m⁻³, $\mu = 4.09$ mm⁻¹, T = 150(2) K, red plate, $0.48 \times 0.17 \times 0.05$ mm, 5868 independent reactions, F^2 refinement, R = 0.033, wR = 0.071 for 4665 reflections ($I > 2\sigma(I)$, $2\theta_{max} = 58.2^\circ$), 340 parameters (CCDC 1559204).

Data for Z-[W(≡CCMe=CMeSiMe₃)(CO)₂(Tp*) - IR (DCM) v_{CO} 1964 vs, 1871 vs cm⁻¹. ¹H NMR (CDCl₃, 25°C, 700.2 MHz): δ_{H} = 5.86 (2 H), 5.76 (1 H) (s × 2, 3 H, pzH), 2.52 (6 H), 2.41 (3 H), 2.37 (6 H), 2.31 (3 H) (s × 4, 18 H, pzCH₃), 2.06 (m, 3 H, Meβ), 1.57 (m, 3 H, Meγ), -0.16 (s, 9 H, SiCH₃). ¹³C[¹H} NMR (CDCl₃, 25°C, 176.0 MHz): δ_{C} = 287.3 (WC), 225.3 (WCO, ¹J_{WC} = 165.4 Hz), 156.0 (Cβ, ²J_{WC} = 42.24 Hz), 152.2, 151.5 [C⁵(pz)], 144.9, 144.1 [C³(pz)], 140.7 (Cγ), 106.5, 106.2 [C⁴(pz)], 19.2 (Meγ), 18.5 (Meβ), 16.5 (pzCH₃), 15.3 (pzCH₃), 12.9 (pzCH₃), 12.8 (pzCH₃) -0.4 (SiCH₃). MS (ESI, high resolution): *m/z* = 676.2342. Calcd. for C₂₅H₃₇¹¹B₁N₆O₂Si₁¹⁸⁴W₁: 676.2350 [M]⁺. Anal. found: C, 44.38; H, 5.63; N, 12.35%. Calcd. for C₂₅H₃₇B₁N₆O₂Si₁W₁: 44.40; H, 5.51; N, 12.43%.

Data for *E*-[W(=CCMe=CMeSiMe₃)(CO)₂(Tp^{*}) - ¹H NMR (CDCl₃, 25°C, 700.2 MHz): δ_{H} = 5.85 (2 H), 5.76 (1 H) (s × 2, 3 H, pzH), 2.47 (6 H), 2.41 (3 H), 2.37 (6 H), 2.33 (3 H) (s × 4, 18 H, pzCH₃), 2.00 (m, 3 H, Meβ), 1.86 (m, 3 H, Meγ), 0.12 (s, 9 H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 25°C, 176.0 MHz): δ_{C} = 286.1 (WC), 225.5, 153.4, 152.3 [C⁵(pz]], 151.9, 144.9, 144.2 [C³(pz)], 140.5 (Cγ), 106.6, 106.2 [C⁴(pz)], 19.6 (Meγ), 19.5 (Meβ), 16.1 (pzCH₃), 14.2 (pzCH₃), 12.9 (pzCH₃), 12.7 (pzCH₃) –0.3 (SiCH₃).

Synthesis of $\{C(=CMeSiMe_3)C=W(CO)_2(Tp^*)\}_2$ (6)

A red solution of $[W(=CCCSiMe_3)(CO)_2(Tp^*)]$ (1a: 200 mg, 0.309 mmol) in tetrahydrofuran (10 mL) at 0°C and was treated with methyl lithium (0.20 mL, 1.6 M solution in Et₂O, 0.32 mmol) and was stirred at 0°C for 10 minutes resulting in a deep green coloured solution. The dark green solution was treated with bromine (0.016 mL, 3.103 g cm⁻¹, 0.320 mmol) at 0°C and was stirred for 10 minutes, then allowed to warm to r.t. Stirring for a further 20 minutes yielded a dark orange solution. All volatiles are removed under reduced pressure providing a brown solid residue. The residue was purified by column chromatography on silica gel commencing with dichlorometane:petroleum spirits (40-60°C) (1:9) as the eluent

followed by a gradual change to (1:1). The third orange band was collected and freed of volatiles to give an orange microcrystalline solid identified as ${C(=CMeSiMe_3)C=W(CO)_2(Tp^*)}_2$ (6). Yield 39 mg (19% Yield). Crystal suitable for single crystal X-ray crystallographic study were grown from a solution in ⁿpentane and dichloromethane stored at -20°C. IR (DCM) v_{CO} 1980 sh, 1972 vs, 1892 s, 1871 s cm^{-1} . ¹H NMR (CDCl₃, 25°C, 800 MHz): δ_{H} = 5.87, 5.84, 5.71 (s x 3, 1 H x 3, pzH), 2.76, 2.50, 2.40, 2.39, 2.37, 2.30 (s x 6, 3 H x 6, pzCH₃), 1.74 (s, 3 H, =CCH₃), -0.15 (s, 9 H, SiCH₃). Minor stereoisomer (14%): 5.80, 5.69, 5.65 (s x 3, 1 H x 3, pzH), 2.34, 2.33, 2.32, 2.28, 2.25 (s x 5, 3 H x 5, pzCH₃, equivocal assignments due to peak overlap with major stereoisomer), 1.79 (s, 3 H, =CCH₃), 0.17 (s, 9 H, SiCH₃). ¹³C{¹H} (201 MHz, $CDCl_3$, resonances for minor isomer in italics) 281.9 (W=C), 227.0, 226.4 (diastereotopic CO), 159.0 (Cβ, ²J_{WC} = 23), 152.5, 152.14, 152.1, 151.9, 151.3 [C⁵(pz)], 145.0 (Cγ), 144.4, 144.4, 144.2, 144.1, 143.9 [C³(pz)], 106.5, 106.4, 106.4, 106.1, 106.0, 106.0, 105.6 [C⁴(pz)], 31.60, 29.7, 22.7 [pzCH₃], 20.9 (CCH₃, HSQC with $\delta_{\rm H}$ = 1.74), 17.7, 17.4, 17.1, 15.1, 15.0, 14.1 [C³(pz)], 12.9, 12.9(2C), 12.8, 12.8(2C), 12.8, 12.7, 12.6(2C), 12.6, 12.5, 0.3, -0.2 (SiCH₃). MS (ESI, high resolution): m/z = 1322.4226. $\label{eq:calcd} \mbox{Calcd. for $C_{48}H_{68}^{-11}B_2N_{12}O_4Si_2^{-184}W_2$: 1322.4230 $[M]^+$. Anal.}$ found: C, 43.74; H, 5.23; N, 12.61%. Calcd. for C48H68B2N12O4Si2W2: 43.59; H, 5.18; N, 12.71%. Crystal data for $C_{48}H_{68}B_2N_{12}O_4Si_2W_2C_5H_{12}$: $M_w = 1394.79$, triclinic, P-1, a =11.0937(3) Å, b = 13.1532(3) Å, c = 22.7516(4) Å, α = 91.059(2)°, β = 98.161(4)°, γ = 108.441(2)°, *V* = 3110.38(13) Å³, Z = 2, ρ_{calcd} = 1.489 Mg m⁻³, μ = 3.79 mm⁻¹, T = 150 K, orange block, 0.36 × 0.17 × 0.11 mm, 12726 independent reactions, F^2 refinement, R = 0.029, wR = 0.062 for 10868 reflections (I > $2\sigma(I)$, $2\theta_{max}$ = 52.8°), 725 parameters, 65 restraints (CCDC 1559204).

In Situ Observation of Li[W(=C=C=CMeSiMe₃)(CO)₂(Tp*)] 2 - A red solution of $[W(\equiv CCCSiMe_3)(CO)_2(Tp^*)]$ (1a: 10 mg, 0.015 mmol) in d_6 -tetrahydrofuran (ca 0.4 mL) at 0°C and was treated with methyl lithium (0.1 mL, 1.6 M solution in Et_2O , 0.016 mmol) and was stirred at 0°C for 10 minutes resulting in a deep green coloured solution. IR (THF) v_{CO} 1853vs, 1676vs, $v_{C=C=C}$ 1928w (tentative) cm⁻¹. A second minor (ca 15%) species believed to be the alternative rotamer (Me syn to Tp*) gives rise to absorptions at v_{CO} 1830m, 1728w, $v_{C=C=C}$ 1933sh cm⁻¹ (\boldsymbol{k}_{CO} = 12.79 Ncm⁻¹). On the ¹H and ¹³C NMR timescale, however, only a single species is apparent suggesting rapid rotation about the allenylidene spine. Partial hydrolysis (ca 5%) during data acquisition corresponds to formation of 3 (THF: v_{CO} = 1961 cm⁻¹). ¹H NMR (d₆-THF, -10°C, 700 MHz): $\delta_{\rm H}$ = 5.87 (1 H), 5.62 (2 H) (s × 2, 3 H, pzH), 2.48 (3 H), 2.41 (3 H), 2.40 (6 H), 2.10 (6 H) (s \times 4, 18 H, pzCH₃), 0.70 (s, 3 H, Me γ), –0.3 (s, 9 H, SiCH₃). ¹³C{¹H} NMR (d₆-THF, -10°C, 176.1 MHz): δ_{c} = 286.8 $(W=C, {}^{1}J_{WC} = 165.4), 252.8 (WCO, {}^{1}J_{WC} = 176.0 Hz), 241.8 (C\beta,$ br. HMBC with $\delta_{\rm H}$ = 0.70) 154.7, 151.3 [C⁵(pz)], 143.5, 142.1 $[C^{3}(pz)]$, 120.1 (C γ , HMBC with δ_{H} = 0.70, -0.3), 106.1, 105.2 $[C^{4}(pz)]$, 29.0 (C γ -**C**H₃ HSQC with δ_{H} = 0.70), 16.9, 16.5(pzCH₃), 12.5 (2 overlapping, pz-CH₃), -2.4 (SiMe₃). From the ¹³C-¹H HMBC spectrum it is clear that a second compound is also

present with δ_{H} = 0.81 correlating with δ_{C} = 269, 218 and 98 resonances.

Figure S1. HOMO-2 Calculated (DFT: B3LYP-LANL2DZ) for the $[W(C=C=CSiMe_3Me)(CO)_2(Tp)]$ anion. HOMO-3 also has appreciable C\beta character.

Chemical Communications

Figure S2. Optimised Geometry (B3LYP-LANL2DZ) for [(Tp)(OC)₂W=C=C=CH₂]⁻.

Atom	z	У	z
W1	-0.7621884	-0.0043861	1.2635906
N2	1.5221080	-0.0608764	1.3917838
N3	2.3270185	-0.0504770	0.2646467
N4	-0.2217046	1.4889126	-0.3628101
N5	0.8240783	1.2792927	-1.2450294
N6	-0.2927053	-1.4313574	-0.4454457
N7	0.7681363	-1.2300739	-1.3116225
08	-1.1885941	-2.1078727	3.5832880
09	-1.1350598	2.0243962	3.6555181
C10	-2.6653029	0.0184519	0.7843419
C11	-1.0375621	-1.3168981	2.6873960
C12	-1.0025276	1.2587623	2.7341458
C13	2.3545674	-0.1081855	2.4552967
C14	3.6968159	-0.1288528	2.0264864
C15	3.6364890	-0.0895584	0.6344366
C16	-0.7856299	2.6661246	-0.7061404
C17	-0.1106760	3.2274142	-1.8099432
C18	0.8996981	2.3214748	-2.1220244
C19	-0.9180723	-2.5546740	-0.8559834
C20	-0.2670240	-3.0899533	-1.9869307
C21	0.7933599	-2.2252991	-2.2448107
B22	1.6853500	0.0002876	-1.1419486
H23	4.5806425	-0.1662433	2.6423253
H24	-0.3313123	4.1581028	-2.3071653
H25	-0.5348133	-3.9783705	-2.5356622
H26	2.5416906	0.0037201	-1.9875703
C27	-3.8946335	0.0191430	0.3857340
C28	-5.1665260	0.0194046	-0.0185055
H29	1.6551737	2.3436836	-2.8905416
H30	-1.6352306	3.0260462	-0.1510271
H31	-1.7900726	-2.8966025	-0.3248949
H32	1.5508625	-2.2457941	-3.0114464
H33	4.4203660	-0.0868574	-0.1056185
H34	1.9405931	-0.1234036	3.4494345
H35	-5.4507722	0.0167086	-1.0742659
H36	-6.0065427	0.0238105	0.6809624

Table S1. Cartesian Coordinates (Å) (B3LYP-LANL2DZ) for [(Tp)(OC)₂W=C=C=CH₂]⁻.

Table	S2. Cartesian	Coordinates (Å)	(B3LYP-LANL2DZ)	for	syn
[(Tp)(OC	₂ W=C=C=C(SiMe ₃)Me]	-			
Atom		v	-		
ALOIN	2	y	2 1.0200020		
VV I	-0.9960384	0.0332673	1.8366938		
NZ N2	-3.2/8/618	0.0515686	1.8824066		
N3	-4.0427022	0.0353298	0.7269431		
N4	-1.4470920	-1.4542976	0.1795286		
N5	-2.465/802	-1.2588612	-0.7369892		
	-1.4248804	1.4033297	0.1226237		
N7	-2.44/3856	1.2497992	-0.7852508		
08	-0.6742563	2.1382513	4.1702312		
09	-0.7013442	-1.9858502	4.2479899		
C10	0.9239457	0.0149400	1.4201707		
C11	-0.7853373	1.3459377	3.2699751		
C12	-0.8025822	-1.2265698	3.3184790		
C13	-4.1495164	0.0777357	2.9159113		
C14	-5.4/53041	0.0782174	2.4392653		
C15	-5.3648970	0.0513515	1.0499592		
C16	-0.8400597	-2.611/9/0	-0.1597723		
C17	-1.4606836	-3.1/38953	-1.2948/46		
C18	-2.4829409	-2.2900067	-1.6300844		
C19	-0.7996331	2.5973050	-0.2600462		
C20	-1.4120856	3.1258087	-1.4155658		
C21	-2.4489919	2.2466646	-1./166829		
B22	-3.351/649	0.0040255	-0.6564590		
H23	-6.3810505	0.0962328	3.0232284		
H24	-1.1977022	-4.0908276	-1./96//09		
H25	-1.1348468	4.0188835	-1.9516519		
H26	-4.1/669//	-0.00/0148	-1.5321031		
C27	2.1654664	0.0049557	1.0641621		
C28	3.4369775	-0.0063600	0.62/1341		
H29	-3.2088946	-2.319/8/9	-2.4262627		
H30	-0.0021384	-2.9599108	0.4200821		
H31	0.0434608	2.9533824	0.30/33/6		
H32	-3.1/51261	2.2583408	-2.5131890		
H33	-6.1216462	0.0426106	0.2822916		
H34	-3.//29/99	0.0944586	3.9249245		
C1	4.6211851	0.0064045	1.5874585		
H2	4.2712920	0.0170959	2.6254968		
H3	5.2648813	0.8879502	1.4350153		
H4	5.2680225	-0.8755502	1.4532555		
SII	3./3130/0	-0.0364684	-1.2392980		
02	3.0144415	1.5199392	-2.0788830		
H6	1.9543444	1.6265647	-1.8222351		
H7	3.1031241	1.4645828	-3.1719110		
H8	3.5338395	2.4243894	-1./393165		
C3	2.9096022	-1.5607201	-2.0392788		
H5	1.8500938	-1.6006717	-1.7620076		
H9	3.3822117	-2.4877223	-1.6920064		
H10	2.9824146	-1.5296386	-3.1344709		
C4	5.6024590	-0.1030347	-1.6315413		
H1	5.7713303	-0.1215803	-2.7160517		
H11	6.0667581	-0.9997139	-1.2031302		
H12	6.1259625	0.7709562	-1.2247306		

Chemical Communications

Table	S3. Cartesian	Coordinates	(Å)	(B3LYP-LANL2DZ)	for	anti-
[(Tp)(OC) ₂ W=C=C=C(SiMe ₃)M	le] [−] .				
Atom	z	v		z		
W1	1.2508426	-0.0482	529	0.9145673		
N2	3.5310449	-0.0064	837	1.0710443		
N3	4.3480668	0.0094	990	-0.0475937		
N4	1.7422893	1.4083	075	-0.7648104		
N5	2.8088994	1.2125	375	-1.6255491		
N6	1.8051895	-1.5170	395	-0.7224109		
N7	2.8610704	-1.2981	946	-1.5899151		
08	0.7519700	-2.1932	651	3.1755657		
09	0.8948756	1.9388	633	3.3489853		
C10	-0.6502147	0.0451	458	0.4271961		
C11	0.9391193	-1.3764	282	2.3083846		
C12	1.0157145	1.2003	265	2.4066969		
C13	4.3515937	0.0265	475	2.1443940		
C14	5.6979115	0.0651	568	1.7306140		
C15	5.6531486	0.0511	307	0.3374448		
C16	1.1208340	2.5354	156	-1.1715664		
C17	1.7803191	3.0787	926	-2.2938383		
C18	2.8408585	2.2145	391	-2.5513695		
C19	1.2512899	-2.6958	454	-1.0771058		
C20	1.9415866	-3.2479	936	-2.1754154		
C21	2.9523672	-2.3360	635	-2.4696810		
B22	3.7220835	-0.0205	694	-1.4619367		
H23	6.5747938	0.0959	587	2.3566440		
H24	1.5173050	3.9717	971	-2.8373637		
H25	1.7316558	-4.1773	240	-2.6796093		
H26	4.5872295	-0.0156	681	-2.2982648		
C27	-1.8747068	0.1367	184	0.0276482		
C28	-3.1696649	0.2127	457	-0.3242087		
H29	3.6030065	2.2395	726	-3.3132037		
H30	0.2447060	2.8745	484	-0.6456610		
H31	0.3995633	-3.0644	104	-0.5309279		
H32	3.7179927	-2.3520	495	-3.2281759		
H33	6.4451968	0.0645	901	-0.3937100		
H34	3.9274051	0.0180	326	3.1342907		
C2	-3.5980865	0.4326	007	-1.//22226		
H1	-4.2166800	1.3380	116	-1.8827649		
H5	-4.2036762	-0.4069	618 005	-2.1523952		
Hb C:1	-2.7215532	0.5373	005	-2.4215214		
SIT	-4.5146109	0.0078	828 901	0.9855175		
	-3./333138	-0.1404	801 021	2.7148049		
пz ц7	-4.5226561	-0.3031	051 7/0	2 0721270		
п/ Цо	-3.1950040	0.7001	120	2.9751270		
по С2	-5.0595510	-0.9700	129 E10	2.7525252		
сэ цл	-3.30432/2	-1.5544	285	0.0290/01		
н4 Н0	-0.3620361	-1.0597	302	1.33413//		
H10	-4.2401047	-2.4339	483	-0 3743277		
C4	-5 7285618	1 <u>/</u> 100	266	0 9630795		
HR	-6.5373478	1 3449	861	1,6911050		
H11	-6.1842620	1 6186	397	-0.0266550		
H12	-5,2065017	2 4204	754	1,2165988		
	5.2005017	2.7204		1.2100000		

Notes and references

This journal is © The Royal Society of Chemistry 20xx

 B. Schwenzer, J. Schleu, N. Burzlaff, C. Karl and H. Fischer, J. Organomet. Chem., 2002, 641, 134–141. (b) I. J. Hart, A. F. Hill and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1989, 2261–2267.

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

¹H NMR of E/Z-W(=CC(H)C(SiMe₃)Me)(CO)₂Tp* Resonances for Z-isomer indicated.

This journal is © The Royal Society of Chemistry 20xx

Dalton Trans., 2017, 00, 1-3 | 8

COMMUNICATION

¹³C{¹H} NMR of E/Z-W(≡CC(H)C(SiMe₃)Me)(CO)₂Tp* Resonances for Z-isomer indicated. $\overset{106.52}{<_{106.25}}$ 23.78 16.61 15.31 12.86 12.73 --0.72 152.23 151.60 151.60 151.25 151.12 151.12 150.99 149.11 148.94 148.97 144.95 144.95 -16.61-15.3112.86 12.73 -23.78 140 26 24 22 20 18 16 14 12 10 f1 (ppm) 155 150 145 f1 (ppm)

This journal is © The Royal Society of Chemistry 20xx

Dalton Trans., 2017, 00, 1-3 | 9

Please do not adjust margins

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(fl(ppm)

Chemical Communications

¹H NMR of E/Z-W(≡CC(H)C(SiMe₃)Me)(CO)₂Tp* Resonances for *E*-isomer indicated. $\begin{pmatrix} 2.53\\ 2.42\\ 2.38\\ 2.34\\ 2.34\\ 1.96\\ 1.96 \end{pmatrix}$ -0.08 5.88 5.77 1 6.00 5.95 5.90 5.85 5.80 f1 (ppm) 5.75 5.70 5.65 \2.42 -2.38 -2.34 -2.53 2.65 2.60 2.55 2.50 2.40 2.35 2.30 2.25 f1 (ppm) 2.00~ 6.05 3.06 3.05 3.10 -1.00-÷ -60.6 -0.5 7.5 6.5 1.5 6.0 5.0 4.5 2.0 0.5 0.0 7.0 5.5 4.0 3.5 f1 (ppm) 3.0 2.5 1.0

10 | Dalton Trans., 2017, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

COMMUNICATION

This journal is © The Royal Society of Chemistry 20xx

Dalton Trans., 2017, 00, 1-3 | 11

Chemical Communications

¹H NMR of E/Z-W(=CC(Me)C(SiMe₃)Me)(CO)₂Tp* Resonances for Z-isomer indicated.

12 | Dalton Trans., 2017, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

COMMUNICATION

This journal is © The Royal Society of Chemistry 20xx

Dalton Trans., 2017, 00, 1-3 | 13

Chemical Communications

14 | Dalton Trans., 2017, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

COMMUNICATION

This journal is © The Royal Society of Chemistry 20xx

Dalton Trans., 2017, 00, 1-3 | 15

Chemical Communications

¹H NMR Spectrum of {C(=CMeSiMe₃)C=W(CO)₂(Tp*)}₂ 6

16 | Dalton Trans., 2017, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

COMMUNICATION

¹³C{¹H} NMR Spectrum of {C(=CMeSiMe₃)C=W(CO)₂(Tp*)}₂ 6

This journal is © The Royal Society of Chemistry 20xx

Dalton Trans., 2017, 00, 1-3 | 17

Chemical Communications

18 | Dalton Trans., 2017, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

COMMUNICATION

¹³C{¹H} NMR (very large peaks are THF and Et₂O) Spectrum of Li[W(=C=C=CMeSiMe₃)(CO)₂(Tp*)]

This journal is © The Royal Society of Chemistry 20xx

Dalton Trans., 2017, 00, 1-3 | 19

Chemical Communications

¹³C-¹H HSQC Spectrum for Li[W(=C=C=CMeSiMe₃)(CO)₂(Tp*)] (3)

20 | Dalton Trans., 2017, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

¹³C-¹H HMBC (correlation to the γ carbon) from SiMe₃ and Me for Li[W(=C=C=CMeSiMe₃)(CO)₂(Tp*)]

This journal is © The Royal Society of Chemistry 20xx

Dalton Trans., 2017, 00, 1-3 | 21

22 | Dalton Trans., 2017, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

COMMUNICATION

Infrared Spectrum (THF) of Li[W(=C=C=CMeSiMe₃)(CO)₂(Tp*)] (cm⁻¹)

This journal is © The Royal Society of Chemistry 20xx

Dalton Trans., 2017, 00, 1-3 | 23

Please do not adjust margins

COMMUNICATION

Chemical Communications

Calculated Infrared Spectrum (cm⁻¹, gas phase) of *anti*-[W(=C=C=CH₂)(CO)₂(Tp)]– (DFT: B3LYP-LANL2DZ) The mode at 1998 cm⁻¹ with zero IR intensity corresponds to the asymmetric C=C=C stretch that is usually characteristic of allenylidenes.

NB: Closer correlation between calculated (gas phase) and measured (THF) spectra are not to be expected due to the inestimable effect of ion pairing with lithium.

24 | Dalton Trans., 2017, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx