Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

# The effect of metal distribution on the luminescence properties of mixedlanthanide metal-organic frameworks

Laura K. Cadman, Mary F. Mahon and Andrew D. Burrows

Electronic supplementary information

| 1. | General experimental details                                                                                                           | S2 |
|----|----------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Synthesis of $[Ln(Hodip)(H_2O)] \cdot nH_2O$ , <b>1-6</b>                                                                              | S2 |
| 3. | Synthesis of [Gd <sub>0.17</sub> Tb <sub>0.19</sub> Eu <sub>0.64</sub> (Hodip)(H <sub>2</sub> O)]· <i>n</i> H <sub>2</sub> O, <b>7</b> | S2 |
| 4. | Synthesis of the core-shell materials 8-10                                                                                             | S3 |
| 5. | Analysis of a mixture of <b>2</b> , <b>3</b> and <b>4</b>                                                                              | S5 |
| 6. | Crystallography                                                                                                                        | S6 |
| 7. | References                                                                                                                             | S9 |

## 1. General experimental details

H<sub>4</sub>odip was synthesised using a previously reported method,<sup>S1</sup> whereas europium nitrate was generated *in situ* from the oxide.<sup>S2</sup> All other starting materials and solvents were purchased from commercial sources and were used without further purification.

Powder X-ray diffraction (PXRD) patterns were recorded on a Bruker AXS D8 Advance diffractometer with copper K $\alpha$  radiation of wavelength 1.5406 Å at 298 K. Samples were placed on a flat plate, and measured with a 2 $\theta$  range of 5-60°. The step size was 0.024° with time per step of 0.3 s. Samples for PXRD analysis were air dried at room temperature for 1 – 2 min.

The fluorescence behaviour was studied at room temperature using a LS 55 luminescence spectrometer with a R928 photomultiplier and a xenon discharge lamp. Samples were decanted from solution and dried at 120 °C for 30 min prior to being ground with a pestle and mortar.

SEM and EDX spectroscopy analysis was conducted on a JEOL 6480LV SEM with an Oxford Instrument EDX system with X-Act silicon drift detector.

# 2. Synthesis of [Ln(Hodip)(H<sub>2</sub>O)]·*n*H<sub>2</sub>O, 1-6

Synthetic methods to produce compounds **1-6** were similar, and the synthesis of  $[Tb(Hodip)(H_2O)]\cdot 2H_2O$  is detailed here.  $Tb(NO_3)_3\cdot 5H_2O$  (0.3 mmol, 0.129 g) and  $H_4odip$  (0.3 mmol, 0.105 g) were placed in a glass vial and dissolved in water (15 ml). The vial was sealed and heated to 85 °C for 48 h. Colourless, needle crystals were produced with a yield of 0.054 g (25 % based on  $H_4odip$ ). The PXRD patterns for **1-6** are shown in Figure 2. Figure S1 shows the experimental PXRD pattern for **4** in comparison with that simulated from the crystal structure.



**Figure S1.** The experimental PXRD pattern for [Tb(Hodip)(H<sub>2</sub>O)]·2H<sub>2</sub>O **4**, in comparison with the PXRD pattern simulated from the crystal structure.

## 3. Synthesis of [Gd<sub>0.17</sub>Tb<sub>0.19</sub>Eu<sub>0.64</sub>(Hodip)(H<sub>2</sub>O)]·*n*H<sub>2</sub>O, 7

Eu<sub>2</sub>O<sub>3</sub> (0.099 mmol, 0.035 g) was added to water (15 ml), and whilst stirring, 1 M nitric acid was added dropwise until the pH of the solution was neutral. Tb(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O (0.098 mmol, 0.043 g) and Gd(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (0.13 mmol, 0.062 g) were added to the solution along with H<sub>4</sub>odip (0.303 mmol, 0.105 g). The vial was sealed and heated to 85 °C for 48 h. Colourless,

needle crystals were produced with a yield of 0.041 g (27 % based on  $H_4$ odip). The PXRD pattern for 7 is shown in Figure S2.



Figure S2. The experimental PXRD pattern for  $[Gd_{0.17}Tb_{0.19}Eu_{0.64}(Hodip)(H_2O)] \cdot nH_2O$  7, in comparison with the PXRD pattern for  $[Tb(Hodip)(H_2O)] \cdot 2H_2O$  4.

The composition of 7 was investigated by EDX spectroscopy to determine the percentage of europium, gadolinium and terbium present in the crystals, the values of which have been normalised to equal a total of 100 %. The results are shown graphically in Figure S3.



| Crystal | % Eu | % Tb | % Gd |
|---------|------|------|------|
| 1       | 62.0 | 19.3 | 18.7 |
| 2       | 63.9 | 19.9 | 16.2 |
| 3       | 63.7 | 19.5 | 16.8 |
| 4       | 65.7 | 18.9 | 15.4 |
| 5       | 64.2 | 19.4 | 16.4 |

**Figure S3.** The percentage of europium, terbium and gadolinium present in five crystals of the product as determined through EDX spectroscopy.

#### 4. Synthesis of the core-shell materials 8-10

The core-shell MOFs were all synthesised using similar methods. The detailed synthesis of  $[Gd(Hodip)(H_2O)]@[Tb(Hodip)(H_2O)]@[Eu(Hodip)(H_2O)]$  is provided here. Eu<sub>2</sub>O<sub>3</sub> (0.298 mmol, 0.105 g) was added to water (15 ml). Whilst stirring, 1 M nitric acid was added dropwise until the pH of the solution was neutral. H<sub>4</sub>odip (0.303 mmol, 0.105 g) was added, and the mixture was stirred until all materials had dissolved. The solution was placed in a sealed vial and heated to 85 °C for 48 h. Colourless, needle crystals were produced which were washed with water through a process of decanting the supernatant and replacing with fresh water. This was repeated three times over 72 h. The crystals were placed in a solution of Tb(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O (0.296 mmol, 0.129 g) and H<sub>4</sub>odip (0.303 mmol, 0.105 g) in water (15 ml) and heated to 85 °C

for 48 h. Colourless crystals were produced and washed in the same way as the crystals isolated after the first step. These crystals were placed in a solution of  $Gd(NO_3)_3 \cdot 5H_2O$  (0.292 mmol, 0.132 g) and H<sub>4</sub>odip (0.303 mmol, 0.105 g) in water (15 ml) heated to 85 °C for 48 h. The colourless crystals produced were the core-shell product  $[Gd(Hodip)(H_2O)]@[Tb(Hodip)(H_2O)]@[Eu(Hodip)(H_2O)]$  8.

For the synthesis of  $[Tb(Hodip)(H_2O)]@[Eu(Hodip)(H_2O)]@[Gd(Hodip)(H_2O)]$  the  $[Gd(Hodip)(H_2O)]$  core was synthesised using the method detailed above. An aqueous solution containing dissolved Eu<sub>2</sub>O<sub>3</sub> (0.302 mmol, 0.106 g) and HNO<sub>3</sub> (1 M solution) was added dropwise until the pH of the solution was neutral. The crystals of  $[Gd(Hodip)(H_2O)]$  were added to the solution and it was placed in a sealed vial and heated to 85 °C for 48 h. The resulting crystals were placed in an aqueous solution of  $Tb(NO_3)_3 \cdot 5H_2O$  (0.340 mmol, 0.147 g) and H<sub>4</sub>odip (0.303 mmol, 0.105 g) and heated to 85 °C for 48 h. Colourless crystals of the core-shell product  $[Tb(Hodip)(H_2O)]@[Eu(Hodip)(H_2O)]@[Gd(Hodip)(H_2O)]$  were formed and washed as described for **8**.

The synthesis of  $[Eu(Hodip)(H_2O)]@[Gd(Hodip)(H_2O)]@[Tb(Hodip)(H_2O)]$  **10** was carried out in a similar manner, but altering the ordering of the reagents.

The PXRD patterns for compounds **8-10** are shown in Figure S4, and SEM images of **8-10** are shown in Figure S5.



**Figure S4.** PXRD patterns for the core-shell MOFs **8-10** in comparison with that observed for [Tb(Hodip)(H<sub>2</sub>O)]·2H<sub>2</sub>O **4**.



Figure S5. SEM images for the core-shell MOFs (a) 8, (b) 9 and (c) 10.

The compositions of **8-10** were investigated by EDX spectroscopy to determine the percentage of europium, gadolinium and terbium present in the crystals, the values of which have been normalised to equal a total of 100 %. The results are shown graphically in Figure S6.



| Crystal | % Eu | % Tb | % Gd |
|---------|------|------|------|
| 1       | 2.4  | 6.5  | 91.1 |
| 2       | 3.4  | 12.8 | 83.8 |
| 3       | 4.7  | 22.6 | 72.7 |
| 4       | 3.7  | 15.1 | 81.2 |

| Crystal | % Eu | % Tb | % Gd |  |
|---------|------|------|------|--|
| 1       | 7.2  | 92.2 | 0.6  |  |
| 2       | 18.1 | 80.9 | 1.0  |  |
| 3       | 6.4  | 92.8 | 0.8  |  |
| 4       | 8.6  | 91.1 | 0.3  |  |

| Crystal | % Eu | % Tb | % Gd |
|---------|------|------|------|
|         |      |      |      |
| 1       | 92.6 | 1.4  | 6.0  |
|         |      |      |      |
| 2       | 86.3 | 2.6  | 11.1 |
|         |      |      |      |
| 3       | 87.3 | 2.1  | 10.6 |
|         |      |      |      |
| 4       | 84.7 | 2.3  | 13.0 |
|         |      |      |      |
| 5       | 75.1 | 1.5  | 23.4 |

Figure S6. The percentages of Eu, Tb and Gd observed in core-shell crystals of (a) 8 (b) 9 and (c) 10 as observed by EDX analysis.

## 5. Analysis of a mixture of 2, 3 and 4

The physical mixture of  $[Eu(Hodip)(H_2O)] \cdot nH_2O$  **2**,  $[Gd(Hodip)(H_2O)] \cdot 2H_2O$  **3** and  $[Tb(Hodip)(H_2O)] \cdot 2H_2O$  **4** was analysed by SEM, as shown in Figure S7.



**Figure S7**. Scanning electron microscope (SEM) image of physical mixture of [Eu(Hodip)(H<sub>2</sub>O)]·*n*H<sub>2</sub>O **2** (red), [Gd(Hodip)(H<sub>2</sub>O)]·2H<sub>2</sub>O **3** (blue) and [Tb(Hodip)(H<sub>2</sub>O)]·2H<sub>2</sub>O (green), as identified by EDX analysis.

# 6. Crystallography

Single crystal X-ray structural analyses were carried out on  $[Sm(Hodip)(H_2O)] \cdot 1.65H_2O$  **1**,  $[Gd(Hodip)(H_2O)] \cdot 2H_2O$  **3**,  $[Tb(Hodip)(H_2O)] \cdot 2H_2O$  **4**,  $[Dy(Hodip)(H_2O)] \cdot 1.8H_2O$  **5**,  $[Er(Hodip)(H_2O)] \cdot 1.8H_2O$  **6** and  $H_4odip \cdot H_2O$ . Suitable crystals were selected and mounted on a SuperNova, Dual, Cu at zero, EosS2 diffractometer. Using the Olex2 interface,<sup>S3</sup> the structures were solved with ShelXS<sup>S4</sup> and refined using ShelXL.<sup>S5</sup> Details of the data collections, solutions and refinements for the metal complexes are given in Table S1 and for  $H_4odip \cdot H_2O$  in Table S2.

The structures of **1** and **3-6** contain two water molecules per asymmetric unit, one of which is disordered over two positions. The occupancies of these solvent molecules differ between structures.

The samarium-containing structure 1 contains O(11) with a site occupancy of 65 % and O(12) which is disordered over two sites, O(12) and O(12A), with site occupancies of 65 % and 35 % respectively. The structure therefore contains a total solvent content of 1.65 water molecules per samarium.

The crystals of **3** were very obviously twinned. Thus, integration of the data for the sample took account of a 2-component twin by virtue of a  $180^{\circ}$  rotation about the 1,0,0 reciprocal direction. The refined twin fractions had a ratio of 75:25. The disordered water molecule based on O(12) and O(12A) was disordered over 2 sites with site occupancies of 80 % and 20 % respectively.

The asymmetric unit of the dysprosium-containing structure **5** contains O(11) with a site occupancy of 80 % based on electron density whilst the O(12)/O(12A) disordered water molecule was modelled with a site occupancy ratio of 75:25. A total of 1.8 solvent water molecules are therefore present per dysprosium.

The water molecule based on O(11) in the structure of **6** was modelled to take account of 80:20 disorder over 2 sites. O(12) refined to 100 % occupancy and, therefore, the structure of **6** contains a total solvent content of 1.8 water molecules per erbium centre.

| Compound                                         | 1                                                       | 3                                                 | 4                                             | 5                                                     | 6                                                     |
|--------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Empirical formula                                | C <sub>16</sub> H <sub>12.3</sub> O <sub>11.65</sub> Sm | C <sub>16</sub> H <sub>13</sub> GdO <sub>11</sub> | $C_{16}H_{13}O_{11}Tb$                        | C <sub>16</sub> H <sub>12.6</sub> DyO <sub>11.8</sub> | C <sub>16</sub> H <sub>12.6</sub> ErO <sub>11.8</sub> |
| Formula weight                                   | 541.31                                                  | 554.51                                            | 556.18                                        | 556.16                                                | 560.92                                                |
| Temperature/K                                    | 150.00(10)                                              | 150.00(10)                                        | 150.01(10)                                    | 150.00(10)                                            | 150.01(10)                                            |
| Crystal system                                   | monoclinic                                              | monoclinic                                        | monoclinic                                    | monoclinic                                            | monoclinic                                            |
| Space group                                      | $P2_{1}/n$                                              | $P2_{1}/n$                                        | $P2_1/n$                                      | $P2_1/n$                                              | $P2_{1}/n$                                            |
| a/Å                                              | 9.92621(12)                                             | 9.8450(5)                                         | 9.8243(2)                                     | 9.8077(2)                                             | 9.76631(17)                                           |
| b/Å                                              | 12.74029(16)                                            | 12.7548(6)                                        | 12.7350(3)                                    | 12.7197(3)                                            | 12.7056(2)                                            |
| c/Å                                              | 13.9980(2)                                              | 13.9951(8)                                        | 13.9772(3)                                    | 13.9411(4)                                            | 13.9075(2)                                            |
| $\beta/^{\circ}$                                 | 93.8694(12)                                             | 93.753(5)                                         | 93.8140(19)                                   | 93.756(2)                                             | 93.7181(16)                                           |
| Volume/Å <sup>3</sup>                            | 1766.19(4)                                              | 1753.62(16)                                       | 1744.85(7)                                    | 1735.42(8)                                            | 1722.10(5)                                            |
| Ζ                                                | 4                                                       | 4                                                 | 4                                             | 4                                                     | 4                                                     |
| $\rho_{\rm calc} {\rm g/cm}^3$                   | 2.036                                                   | 2.100                                             | 2.117                                         | 2.129                                                 | 2.163                                                 |
| $\mu/\text{mm}^{-1}$                             | 25.589                                                  | 25.113                                            | 20.585                                        | 23.679                                                | 9.694                                                 |
| <i>F</i> (000)                                   | 1054.0                                                  | 1076.0                                            | 1080.0                                        | 1076.0                                                | 1084.0                                                |
| Crystal size/mm <sup>3</sup>                     | $0.079 \times 0.058 \times 0.042$                       | $0.078 \times 0.019 \times 0.015$                 | $0.079 \times 0.054 \times 0.029$             | 0.056 × 0.032 × 0.025                                 | $0.111 \times 0.046 \times 0.019$                     |
| Radiation                                        | $CuK\alpha (\lambda = 1.54184 \text{ Å})$               | Cu <i>K</i> $\alpha$ ( $\lambda$ = 1.54184 Å)     | Cu <i>K</i> $\alpha$ ( $\lambda$ = 1.54184 Å) | Cu <i>K</i> $\alpha$ ( $\lambda$ = 1.54184 Å)         | $CuK\alpha (\lambda = 1.54184 \text{ Å})$             |
| 2θ range for data collection/°                   | 9.396 to 145.918                                        | 9.39 to 145.7                                     | 9.404 to 145.672                              | 9.422 to 145.704                                      | 9.438 to 145.298                                      |
|                                                  | $-12 \le h \le 12,$                                     | $-12 \le h \le 10,$                               | $-11 \le h \le 12,$                           | $-10 \le h \le 12,$                                   | $-9 \le h \le 11,$                                    |
| Index ranges                                     | $-15 \le k \le 15,$                                     | $-15 \le k \le 15,$                               | $-15 \le k \le 8,$                            | $-15 \le k \le 9,$                                    | $-15 \le k \le 9,$                                    |
|                                                  | $-16 \le l \le 17$                                      | $-17 \le l \le 17$                                | $-17 \le l \le 17$                            | $-16 \le l \le 17$                                    | $-16 \le l \le 16$                                    |
| Reflections collected                            | 26509                                                   | 5691                                              | 7002                                          | 6659                                                  | 5971                                                  |
| Independent reflections, $R_{\rm int}$           | 3504, 0.0294                                            | 5691, 0.0252                                      | 3383, 0.0304                                  | 3377, 0.0324                                          | 3336, 0.0252                                          |
| Data/restraints/parameters                       | 3504/1/270                                              | 5691/6/279                                        | 3383/1/270                                    | 3377/0/278                                            | 3336/0/276                                            |
| Goodness-of-fit on $F^2$                         | 1.069                                                   | 0.893                                             | 1.143                                         | 1.014                                                 | 1.060                                                 |
| Final R1, wR2 indexes<br>$[I \ge 2\sigma(I)]$    | 0.0219, 0.0531                                          | 0.0282, 0.0695                                    | 0.0382, 0.0789                                | 0.0299, 0.0610                                        | 0.0311, 0.0749                                        |
| Final <i>R</i> 1, <i>wR</i> 2 indexes [all data] | 0.0241, 0.0542                                          | 0.0419, 0.0718                                    | 0.0460, 0.0824                                | 0.0407, 0.0652                                        | 0.0378, 0.0792                                        |
| Largest diff. peak/hole / e Å <sup>-3</sup>      | 0.46/-0.72                                              | 0.83/-0.60                                        | 0.54/-0.56                                    | 0.62/-0.52                                            | 0.66/-0.64                                            |

 Table S1. Crystallographic data for compounds 1, 3-6.

| Empirical formula                             | $C_{16}H_{12}O_{10}$                                           |
|-----------------------------------------------|----------------------------------------------------------------|
| Formula weight                                | 364.26                                                         |
| Temperature/K                                 | 150.00(10)                                                     |
| Crystal system                                | triclinic                                                      |
| Space group                                   | PĪ                                                             |
| a/Å                                           | 7.7677(7)                                                      |
| b/Å                                           | 8.5957(6)                                                      |
| c/Å                                           | 12.8044(10)                                                    |
| <i>α</i> /°                                   | 73.373(7)                                                      |
| $\beta/^{\circ}$                              | 72.777(8)                                                      |
| $\gamma/^{\circ}$                             | 70.317(7)                                                      |
| Volume/Å <sup>3</sup>                         | 752.19(12)                                                     |
| Ζ                                             | 2                                                              |
| $\rho_{\rm calc} g/{\rm cm}^3$                | 1.608                                                          |
| $\mu/\text{mm}^{-1}$                          | 1.193                                                          |
| <i>F</i> (000)                                | 376.0                                                          |
| Crystal size/mm <sup>3</sup>                  | $0.114 \times 0.084 \times 0.06$                               |
| Radiation                                     | $CuK\alpha$ ( $\lambda = 1.54184$ )                            |
| $2\theta$ range for data collection/°         | 7.388 to 145.612                                               |
| Index ranges                                  | $-9 \le h \le 8,$<br>$-10 \le k \le 10,$<br>$-15 \le l \le 15$ |
| Reflections collected                         | 4848                                                           |
| Independent reflections, $R_{\rm int}$        | 2910, 0.0230                                                   |
| Data/restraints/parameters                    | 2910/0/199                                                     |
| Goodness-of-fit on $F^2$                      | 1.041                                                          |
| Final R1, wR2 indexes<br>$[I \ge 2\sigma(I)]$ | 0.0408, 0.1058                                                 |
| Final R1, wR2 indexes<br>[all data]           | 0.0481, 0.1139                                                 |
| Largest diff. peak/hole / e Å <sup>-3</sup>   | 0.29/-0.27                                                     |

**Table S2.** Crystallographic data for H40dip·H2O.

The molecular structure of  $H_4$  odip is shown in Figure S8(a), with one of the principal hydrogen bonding motifs and the gross structure depicted in Figures S8(b) and S8(c) respectively.



**Figure S8**. The structure of H<sub>4</sub>odip·H<sub>2</sub>O, showing (a) the molecular structure, (b) one of the main hydrogen bonding motifs (a  $R_3^3(10)$  ring), and (c) the gross structure, with one H<sub>4</sub>odip molecule highlighted in purple.

#### 7. References

- S1. Y. Peng, G. Li, J. Hua, Z. Shi and S. Feng, *CrystEngComm*, 2015, 17, 3162.
- S2. H. Wang, R. Wang, X. Sun, R. Yan and Y. Li, *Mater. Res. Bull.*, 2005, 40, 911.
- S3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Cryst.*, 2009, **42**, 339.
- S4. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.
- S5. G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3.