Supplementary Information for

Electrochemical behavior of a Rh(pentamethylcyclopentadienyl) complex bearing an NAD⁺/NADH-functionalized ligand

Katsuaki Kobayashi,^{a*} Take-aki Koizumi,^b Debashis Ghosh,^c Takashi Kajiwara,^c Susumu Kitagawa,^c Koji Tanaka^{c*}

^aDepartment of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka

558-8585 Japan

^bLaboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan ^cInstitute for Integrated Cell–Material Sciences (KUIAS/iCeMS), Kyoto University, Yoshida, Sakyoku, Kyoto 606-8501, Japan

Figure S1. (a) ESI-MS spectrum of [1]Cl in CH₃CN containing 10% TEA and (b) simulated spectrum of $[1]^+$.

Figure S2. Spectral changes for [RhCp*(bpy)Cl]Cl during reduction at -1.0 V (*vs.* SCE) in CH₃CN with 0.1 M $[nBu_4][PF_6]$ as the supporting electrolyte.

Figure S3. Cyclic voltammograms of [1]Cl in the presence of varying amounts of AcOH.

Figure S4. Electronic spectra of [1]Cl in the absence of $CoCp_2$ (red line) and the presence of 2 equiv. of $CoCp_2$ (blue line) in CH₃CN containing 1.0% AcOH.

Figure S5. (a) ESI-MS spectrum of [1]Cl in the presence of 1.0% AcOH containing 2 equiv. of $CoCp_2$ in CH₃CN, as well as simulated spectra of (b) [1]⁺ and (c) [1HH]⁺.

Figure S6. ¹H NMR spectrum (400 MHz) of [1]Cl in CD₃CN.

Figure S7. ¹H NMR spectrum (400 MHz) of [1CH]Cl in CD₃CN.

Figure S8. ¹H NMR spectrum (400 MHz) of [1]Cl containing 2 equiv. of CoCp₂ in 1.0% AcOH/CD₃CN.