SUPPLEMENTARY INFORMATION

Figure S1. X-ray crystal structure of the $[Ru(Me_4phen)(Me_2bpy)]^{2+}$ complex.

Experimental: Characterisation for the decomposition products detected in the synthesis of $cis-\alpha$ -[Ru(phen')(bb₇)]²⁺ (phen' = Me₂phen and Me₄phen).

[**Ru**(**Me**₂**phen**)(**Me**₂**bpy**)₂]²⁺: ¹H NMR (400 MHz, CD₃CN): δ 8.361 (s, 4H; H2/H9 & H5/H6); 8.315 (br s, 2H; bipy3'); 7.90 (d, J= 5.2 Hz, 2H, bipy3); 7.63 (dd, J= 6.0Hz, 2H, H3/H8); 7.55 (dd, J= 0.8, 5.6 Hz, 2H; bipy6'); 7. 32 (d, J= 6.0 Hz, 2H; bipy6); 7.25 (dd, J=0.8, 5.6 Hz, 2H; bipy5'); 7.02 (dd, J=1.2, 6.0 Hz, 2H; bipy5); 2.90 (s, 6H; CH₃ Me₂phen); 2.55 (s, 6H; CH3 bipy); 2.46 (s, 6H; CH3 bipy). TOF MS (ESI +): most abundant ion found for [M – 2PF₆]²⁺, *m/z* 339.1. Calc. for [C₃₈H₃₆N₆Ru]²⁺, *m/z* 338.9. most abundant ion found for [M – PF₆]⁺, *m/z* 823.2. Calc. for Ru[C₃₈H₃₆N₆(PF₆)]⁺, *m/z* 822.8.

[Ru(Me₄phen)(Me₂bpy)₂]](PF₆)₂: ¹H NMR (400 MHz, CD₃CN): δ 8.35 (s, 2H; H2/H9); 8.34 (s, 2H, H5/ H6); 8.31 (s, 2H; bipy3'); 7.76 (s, 2H, bipy3); 7.60 (d, *J*= 6.0 Hz, 2H; bipy6'); 7.31 (d, J= 6.0Hz, 2H; bipy6); 7.24 (dd, J=0.8, 5.6Hz, 2H; bipy5'); 7.01 (dd, J=0.8, 5.6 Hz, 2H; bipy5); 2.78(s, 6H, CH3 Me₄phen); 2.55 (s, 6H; CH₃ bipy); 2.46 (s, 6H; CH₃ bipy); 2.33(s, 6H, CH₃ Me₄phen). TOF MS (ESI +): most abundant ion found for [M – 2PF₆]²⁺, m/z 353.1. Calc. for [C₄₀H₄₀N₆Ru] ²⁺, m/z 353.1. most abundant ion found for [M – PF₆]⁺, m/z 851.2. Calc for Ru[C₄₀H₄₀N₆(PF₆)]⁺, m/z 851.2.

Reference 34:

Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kús, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio Jr., H. Dop, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, P. A. Pieniazek, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, N. Sergueev, S. M. Sharada, S. Sharmaa, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, V. Vanovschi, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhou, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xua, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Mol. Phys., 2015, 113, 184.