Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

The cisplatin-based Pt(IV)-diclorofibrato multi-action anticancer prodrug exhibits

excellent performances also in hypoxic conditions

Elisabetta Gabano,^{a*} Mauro Ravera,^a Francesca Trivero,^a Stefano Tinello,^a Andrea Gallina,^a Ilaria Zanellato,^a Marzia B. Gariboldi,^b Elena Monti,^b Domenico Osella,^a

^a Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy. E-mail: elisabetta.gabano@uniupo.it

^b Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, Via Manara 7, 21052 Busto Arsizio (VA).

ELECTRONIC SUPPORTING INFORMATION

Content:

Figure S0:	Sketch of the complexes under investigation			
Figures S1-S2:	NMR characterization of the clofibroyl chloride			
Figures S3-S9:	NMR and ESI-MS characterization of complex 1 and its ¹⁵ N-labeled analogue			
Figures S10-S15:	NMR and ESI-MS characterization of complex 2 and its ¹⁵ N-labeled analogue			
Figures S16-S19:	[¹ H, ¹⁵ N] HSQC spectra for the reduction of complexes 1 and 2 with cell extracts.			
Figure S20:	Cell cycle distribution of A2780 cells (top plots) and HCT 116 (bottom plots) after 48			
	CT with equitoxic concentrations of cisplatin and 2 in normoxic (left plots) and hypoxic			
	conditions (right plots). The abscissa of each plot represents the percentage of cells			
	among the cell cycle phases. Data are means \pm standard error means of at least three			
	independent samples.			

Table S1:Genes analyzed by means of Quantitative Reverse Transcription PCR (RT-qPCR). The
NCBI accession number is reported along with the 5'-3' sequence of the forward and
reverse primer and the expected product length.

2

Figure S0. Sketch of the complexes under investigation

Figure S1. ¹H NMR spectrum of clofibroyl chloride in CDCl₃

Figure S2. ¹³C{¹H} NMR spectrum of clofibroyl chloride in CDCl₃

Figure S3: ¹H NMR spectrum of complex 1 in DMSO-d₆ (residual acetone is observed at ca. 2.1 ppm).

Figure S4: ${}^{13}C{}^{1}H$ NMR spectrum of complex 1 in DMSO-d₆.

Figure S5: ¹⁹⁵Pt NMR spectrum of complex 1 in DMSO-d₆.

Figure S6: [¹H, ¹³C] HSQC NMR spectrum of complex 1 in DMSO-d₆.

Figure S7: ESI-MS NMR spectrum of complex 1 showing both the [M+H]⁺ and [M+Na]⁺ species and simulation for the [M+H]⁺ species

Figure S8: $^{15}N{^{1}H}$ DEPT-45 NMR spectrum of $^{15}N-1$

Figure S9: ESI-MS NMR spectrum of complex ¹⁵N-1 showing both the [M+H]⁺ and [M+Na]⁺ species and simulation for the [M+H]⁺ species

Figure S10: ¹H NMR spectrum of complex 2 in DMSO-d₆.

Figure S11: ${}^{13}C{}^{1}H$ NMR spectrum of complex 2 in DMSO-d₆.

Figure S12: ¹⁹⁵Pt NMR spectrum of complex 2 in DMSO-d₆.

Figure S13: ESI-MS NMR spectrum of complex 2 showing both the [M+H]⁺ and [M+Na]⁺ species and simulation for the [M+H]⁺ species

Figure S14: $^{15}N{^{1}H}$ DEPT-45 NMR spectrum of complex $^{15}N-2$

Figure S15: ESI-MS NMR spectrum of complex ¹⁵N-2 showing both the [M+H]⁺ and [M+Na]⁺ species and simulation for the [M+H]⁺ species

Figure S16: [¹H, ¹⁵N] HSQC spectrum of complex ¹⁵N-1

Figure S17: [¹H, ¹⁵N] HSQC spectrum for the reduction of complex ¹⁵N-1 with cell extracts

Figure S18: [¹H, ¹⁵N] HSQC spectrum of complex ¹⁵N-2

Figure S19: [¹H, ¹⁵N] HSQC spectrum for the reduction of complex ¹⁵N-2 with cell extracts

Figure S20: Cell cycle distribution of A2780 cells (top plots) and HCT 116 (bottom plots) after 48 h CT with equitoxic concentrations of cisplatin and 2 in normoxic (left plots) and hypoxic conditions (right plots). The *abscissa* of each plot represents the percentage of cells among the cell cycle phases. Data are means \pm standard error means of at least three independent samples.

Table S1. Genes analyzed by means of Quantitative Reverse Transcription PCR (RT-qPCR). The NCBI accession number is reported along with the 5'-3'

Gene	Accession n°	Forward	Reverse	Product lenght (bp)
ACOX1	NM_004035.6	GCTGGAGCTGCGGATTTAGA	TGTTCTCGATCTCTCGGCGG	187
ACOX1	NM_001876.3	CACTGAGCACGGCAAGATGAG	AGGCGAGGCAGCGATGTC	111
Cyclin D1 (CCND1)	NM_053056.2	TGAGGGACGCTTTGTCTGTC	GCCTTTGGCCTCTCGATACA	75
p21 (CDKN1A)	NG_009364	GCGACTGTGATGCGCTAATG	GAAGGTAGAGCTTGGGCAGG	141
Cyclin A2 (CCNA2)	NM_001237.4	TGGTGGTCTGTGTGTTCTGTGA	TGCCAGTCTTACTCATAGCTGA	136
Cyclin E (CCNE)	NM_001238	GCAGGATCCAGATGAAGAAATG	TAATCCGAGGCTTGCACGTT	173
HMOX1	NM_002133.2	TCTTGGCTGGCTTCCTTACC	GGATGTGCTTTTCGTTGGGG	123
TP53 (p53)	NG_017013.2	GCCCCTCCTCAGCATCTTATC	CTCATAGGGCACCACCACAC	99
GAPDH	NG_007073.2	ATCCCTGAGCTGAACGGGAA	GGCAGGTTTTTCTAGACGGC	99
HPRT1	NM_000194.2	TTGCTTTCCTTGGTCAGGCA	ATCCAACACTTCGTGGGGTC	85
RNA18SN1	NR_145820.1	CGTCTGCCCTATCAACTTTCG	TGCCTTCCTTGGATGTGGTAG	124

sequence of the forward and reverse primer and the expected product length.