Electronic Supplementary Information (ESI)

A Novel Polyhedron-Based Metal-Organic Framework with High

Performance for Gas Uptake and Light Hydrocarbon Separation

Qiushi Sun,^a Shuo Yao,^b Bing Liu,^a Xinyao Liu,^a Guanghua Li,^a Xiaoyang Liu^a and Yunling Liu^a*

^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

E-mail: yunling@jlu.edu.cn; Fax: +86-431-85168624; Tel: +86-431-85168614

^b Key Laboratory of Marine Chemical Theory and Technology, Ocean University of

China, College of Chemistry and Chemical Engineering, Qingdao, 266100, China.

Calculation procedures of selectivity from IAST

The measured experimental data is excess loadings (q^{ex}) of the pure components CO₂, CH₄, C₂H₆ and C₃H₈ for **JLU-Liu40**, which should be converted to absolute loadings (q) firstly.

$$q = q^{ex} + \frac{pV_{pore}}{ZRT}$$

Here Z is the compressibility factor. The Peng-Robinson equation was used to estimate the value of compressibility factor to obtain the absolute loading, while the measure pore volume $0.86 \text{ cm}^3 \text{ g}^{-1}$ is also necessary.

The dual-site Langmuir-Freundlich equation is used for fitting the isotherm data at 298K.

$$q = q_{m_1} \times \frac{b_1 \times p^{1/n_1}}{1 + b_1 \times p^{1/n_1}} + q_{m_2} \times \frac{b_2 \times p^{1/n_2}}{1 + b_2 \times p^{1/n_2}}$$

Here *p* is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), *q* is the adsorbed amount per mass of adsorbent (mol kg⁻¹), q_{m1} and q_{m2} are the saturation capacities of sites 1 and 2 (mol kg⁻¹), b_1 and b_2 are the affinity coefficients of sites 1 and 2 (1/kPa), n_1 and n_2 are the deviations from an ideal homogeneous surface.

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2, perhaps in the presence of other components too, can be formally defined as

$$S = \frac{q_1/q_2}{p_1/p_2}$$

 q_1 and q_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of q_1 and q_2 using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz.

Figure S1. Optical images (a) without light and (b) with light of JLU-Liu40.

Figure S2. Simulated, as-synthesized and activated PXRD patterns for JLU-Liu40 samples.

Figure S3. TGA curves of JLU-Liu40 for the as-synthesized and activated samples.

Figure S4. (a) Three types of tiles with face symbol; (b) Natural tiling of JLU-Liu40.

Figure S5. Illustration of topology of JLU-Liu40.

Figure S6. Space-filling view of the structure of JLU-Liu40 along the (111) directions.

Figure S7. The structure differences between JLU-Liu40 and the previously reported JLU-Liu20/21.

Figure S8. Isosteric heat of CO_2 (a), CH_4 (b), C_2H_6 (c) and C_3H_8 (d) for JLU-Liu40.

Figure S9. The infrared spectra for the ligand (red) and JLU-Liu40 (blue).

Figure S10. ORTEP drawing of the asymmetric unit of JLU-Liu40.

Materials	Companies	Purities
Zn(NO ₃) ₂ ·6H ₂ O	Sinopharm Chemical Reagent Co., Ltd.	99%
H₄TADIPA	Jinan Henghua Sci. & Tec. Co., Ltd.	95%
DMF	Sinopharm Chemical Reagent Co., Ltd.	99%
DABCO	Aladdin Industrial Corporation	98%
CH₃CN	Sinopharm Chemical Reagent Co., Ltd.	99%

Table S1. The companies and reactants purities of chemicals used for the synthesis of JLU-Liu40.

HNO₃

compound	JLU-Liu40
Formula	$C_{58}H_{72}N_{14}O_{22}Zn_3$
Formula weight	1162.85
Temperature (K)	173(2)
Wavelength (Å)	0.71073
Crystal system	Cubic
Space group	Im-3m
a (Å)	31.289(4)
b (Å)	31.289(4)
<i>c</i> (Å)	31.289(4)
α (°)	90
6 (°)	90
γ (°)	90
<i>V</i> (Å ³)	30631(11)
<i>Z</i> , <i>D_c</i> (Mg/m ³)	12, 0.985
F(000)	9408
ϑ range (deg)	2.255-25.014
reflns collected/unique	44862/2556
R _{int}	0.0848
data/restraints/params	2556/143/88
GOF on <i>F</i> ²	1.068
R_1 , wR_2 (I>2 σ (I))	0.0598, 0.1591
R_1 , wR_2 (all data)	0.0808, 0.1712

 Table S2. Crystal data and structure refinements for JLU-Liu40.

Compounds	CO ₂ Ad	Ref.	
	273K	298K	
CPM-231	45.6	N. A.	1
Cu-TDPAT	44.7	25.8	2
Cu-TPBTM	44.5	23.3	3
JLU-Liu21	42.3	23.2	4
SUN-5	38.5	N. A.	5
JLU-Liu20	31.8	17.3	4
SIFXIX-2-Cu-i	28.6	23.8	6
Cu ₂ (EBTC)(H ₂ O) ₂	25.9	N. A.	7
JLU-Liu40	20.7	10.2	This work
[Zn ₂ (abtc)(DMF) ₂] ₃	20.6	N. A.	8
Zn ₂ (BTetB)	19.7	N. A.	9
[Cu ₂ (abtc)(DMF) ₂] ₃	19.2	N. A.	8
Cu ₂ (TCM) (SNU-21S)	18.4	11.1	10
Cu ₂ (TCM) (SNU-21H)	17.1	9.65	10

Table S3. Summary of CO₂ uptake for materials based on Zn or Cu units reported in the literature.

N.A.: Not Available. The article do not list the data.

Table S4. The refined parameters for the Dual-site Langmuir-Freundlich equations fit for the pure isotherms of CO_2 , CH_4 , C_2H_6 and C_3H_8 for **JLU-Liu40** at 298 K.

	q _{m1}	b1	n ₁	q _{m₂}	b ₂	n ₂	R ²
CO ₂	7.92137	2.1407	1.55526E-4	0.02062	1.56943	0.94179	0.99995
CH₄	2.88752	0.03673	0.00168	1.72543E-13	1.03069	6.56259	0.99999
C₂H ₆	1.25107	8.42528	9.28115E-7	0.01066	3.11838	0.95015	0.99996
C_3H_8	1.99721	6.15838	0.00336	0.10724	2.2914	0.87292	0.99992

Table S5. N_2 adsorption data and structure information for JLU-Liu40.

Compounds	SA _{BET}	SA _{Langmuir}	Pore volume (cm ³ g ⁻¹)	OMSs	LBSs
	(m² g⁻¹)	(m ² g ⁻¹)	(Experimental/Theoretical)	(nm⁻³)	(nm ⁻³)
JLU-Liu40	1455	2084	0.86/1.16	0.76	1.59

	Coordination Sequence										
Vertex	CS1	CS2	CS3	CS4	CS5	CS6	CS7	CS8	CS9	CS10	Cum10
V ₁ (4-c)	5	13	33	63	111	195	303	441	605	815	2584
V ₂ (4-c)	5	13	33	70	126	203	303	457	633	854	2697
V ₃ (3-c)	4	12	30	61	111	188	292	420	601	813	2532
Vertex	Extended point symbols										
V ₁ (4-c)	[7(2).	[7(2).7(2).7(2).8(3).8(3)]									
V ₂ (4-c)	[7.7.7.8.8]										
V ₃ (3-c)	[7(2).7(2).9(2)]										

 Table S6 Topological information for JLU-Liu40.

Reference

- 1 Q. G. Zhai, X. H. Bu, X. Zhao, D. S. Li, Y. P. Feng, Acc. Chem. Res. 2017, 50, 407-417.
- B. Y. Li, Z. J. Zhang, Y. Li, K. X. Yao, Y. H. Zhu, Z. Y. Deng, F. Yang, X. J. Zhou, G. H. Li, H. H. Wu, N. Nijem, Y. J. Chabal, Z. Shi, S. H. Feng, J. Li, *Angew. Chem. Int. Ed.* 2012, *51*, 1412-1415.
- 3 B. Zheng, J. Bai, J. Duan, L. Wojtas, M. J. Zaworotko, J. Am. Chem. Soc. **2011**, 133, 748-751.
- 4 B. Liu, , S. Yao, C. Shi, G. Li, Q. Huo, Y. L. Liu, *Chem. Commun.* **2016**, *52*, 3223-3226.
- 5 Y. G. Lee, H. R. Moon, Y. E. Cheon, M. P. Suh, Angew. Chem. Int. Ed. 2008, 47, 7741-7745.
- P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B.
 Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, *Nature*, **2013**, *495*, 80-84.
- 7 Y. X. Hu, S. C Xiang, W.W. Zhang, Z. X. Zhang, L. Wang, J. F. Bai and B. L. Chen, *Chem. Commun.*, 2009, 7551-7553.
- 8 Y. G. Lee, H. R. Moon, Y. E. Cheon and M. P. Suh, *Angew. Chem. Int. Ed.*, 2008, **47**, 7741-7745.
- 9 Y. S. Bae, O. K. Farha, J. T. Hupp, R. Q. Snurr, J. Mater.Chem., 2009, **19**, 2131-2134.
- 10 T. K. Kim and M. P. Suh, *Chem. Commun.*, 2011, **47**, 4258-4260.