SUPPLEMENTARY MATERIAL

STEPWISE SYNTHESIS, CHARACTERIZATION, DNA BINDING PROPERTIES AND CYTOTOXICITY OF DIRUTHENIUM OLIGOPYRIDINE COMPOUNDS CONJUGATED WITH PEPTIDES.

Konstantinos Ypsilantis ^a, John C. Plakatouras ^a, Manolis J. Manos ^a, Andreas Kourtellaris ^d, Georgios Markopoulos ^{b,c}, Evangelos Kolettas ^{b,c} and Achilleas Garoufis ^a*.

^a Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.

^b Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Greece.

^c Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 45110 Ioannina, Greece.

^d Department of Chemistry, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus

TABLE OF CONTENTS

Figure S1. ¹H NMR spectrum of complex (**1**) at 298 K in acetone-d₆ with the signal assignments Figure S2. ¹H NMR spectrum of complex (**2**) at 298 K in acetone-d₆ with the signal assignments Figure S3. ¹H NMR spectrum of complex (**3**) at 298 K in acetone-d₆ with the signal assignments Figure S4. ¹H NMR spectrum of complex (**4**) at 298 K in dmso-d₆ with the signal assignments Figure S5. ¹H NMR spectrum of complex (**5**) at 298 K in aceton-d₆ with the signal assignments Figure S6. ¹H NMR spectrum of complex (**6**) at 298 K in aceton-d₆ with the signal assignments Figure S7. ¹H NMR spectrum of complex (**6**) at 298 K in aceton-d₆ with the signal assignments Figure S8. ¹H NMR spectrum of complex (**6**) at 298 K in aceton-d₆ with the signal assignments Figure S8. ¹H NMR spectrum of complex (**9**) at 298 K in aceton-d₆ with the signal assignments Figure S9. ¹H NMR spectrum of complex (**9**) at 298 K in aceton-d₆ with the signal assignments Figure S10. ¹H NMR spectrum of complex (**10**) at 298 K in aceton-d₆ with the signal assignments Figure S10. ¹H NMR spectrum of complex (**10**) at 298 K in aceton-d₆ with the signal assignments Figure S11. ¹H NMR spectrum of complex (**4**) in H₂O:D₂O 9:1, 100 mM phosphates pH = 7.0, 298 K, with the signal assignments Figure S12. ¹H NMR spectrum of complex (5) in $H_2O:D_2O$ 9:1, 100 mM phosphates pH = 7.0, 298 K, with the signal assignments

Figure S13. ¹H NMR spectrum of complex (**6**) in $H_2O:D_2O$ 9:1, 100 mM phosphates pH = 7.0, 298 K, with the signal assignments

Figure S14. MTT assay on H1299 and H1437 cancer cell lines.

Table S1. Crystallographic data for complexes $[(trpy)Ru(tppz)Ru(trpy-CO_2H)](PF_6)_4$, (2)(PF₆)₄;

[(ptrpy)Ru(tppz)Ru(trpy-CO₂H)](PF₆)₄, (**3**)(PF₆)₄; [(ptrpy)Ru(tppz)Ru(trpy-CO₂H)](PF₆)₄, (**4**)(PF₆).

Table S2. ¹H NMR chemical shifts (δ) in ppm of the complexes (**4**), (**5**) and (**6**) in aqueous (H₂O:D₂O, 9:1) buffer phosphates (100 mM, pH = 7.0) at 298 K.

Table S3. ¹H NMR (500 MHz) resonances (ppm) of the free d(5'-CGCGAATTCGC-3')₂ in 100 mM phosphate buffer (pH 7.0), H₂O:D₂O 9:1, at 298 K.

Table S4. ¹H NMR chemical shifts (δ) in ppm of the complexes (**4**), (**5**) and (**6**) upon addition to the oligonucleotide duplex d(CGCGAATTCGCG)₂ at 1:1 molar ratio, in aqueous buffer phosphates (100 mM, pH = 7.0) at 298 K

Table S5. Changes in d(5'-CGCGAATTCGC-3')₂ chemical shifts upon addition of (**4**) in molar ratio 1:1 [(δ ppm),100 mM phosphate buffer (*p*H 7.0), H₂O:D₂O = 9:1, 298 K.

Table S6. Changes in d(5'-CGCGAATTCGC-3')₂ chemical shifts upon addition of (**5**) in molar ratio 1:1 [(δ ppm),100 mM phosphate buffer (*p*H 7.0), H₂O:D₂O = 9:1, 298 K.

Table S7. Changes in $d(5'-CGCGAATTCGC-3')_2$ chemical shifts upon addition of (6) in molar ratio

1:1 [(δ ppm),100 mM phosphate buffer (*p*H 7.0), H₂O:D₂O = 9:1, 298 K

Figure S1. ¹H NMR spectrum of complex (1) at 298 K in acetone-d₆ with the signal assignments

Figure S2. ¹H NMR spectrum of complex (2) at 298 K in acetone-d₆ with the signal assignments

Figure S3. ¹H NMR spectrum of complex (3) at 298 K in acetone-d₆ with the signal assignments

Figure S4. ¹H NMR spectrum of complex (4) at 298 K in dmso-d₆ with the signal assignments

Figure S5. ¹H NMR spectrum of complex (5) at 298 K in aceton-d₆ with the signal assignments

Figure S6. ¹H NMR spectrum of complex (6) at 298 K in aceton- d_6 with the signal assignments

Figure S7. ¹H NMR spectrum of complex (6) at 298 K in aceton-d₆ with the signal assignments

Figure S8. ¹H NMR spectrum of complex (8) at 298 K in aceton-d₆ with the signal assignments

Figure S9. ¹H NMR spectrum of complex (9) at 298 K in aceton- d_6 with the signal assignments

Figure S10. ¹H NMR spectrum of complex (10) at 298 K in aceton-d₆ with the signal assignments

[A]H3H5

Figure S11. ¹H NMR spectrum of complex (4) in $H_2O:D_2O$ 9:1, 100 mM phosphates pH = 7.0, 298 K, with the signal assignments

Figure S12. ¹H NMR spectrum of complex (5) in $H_2O:D_2O$ 9:1, 100 mM phosphates pH = 7.0, 298 K, with the signal assignments

Figure S13. ¹H NMR spectrum of complex (6) in $H_2O:D_2O$ 9:1, 100 mM phosphates pH = 7.0, 298 K, with the signal assignments

Figure S14. Figure 13. MTT assay on H1299 and H1437. Cell viability was assessed by the trypan blue exclusion test in H1299 (A) or H1437 (B) cells. 5x104 lung cancer cells were seeded in a 24-well-plate and treated with (**5**)Cl₅, (**6**)Cl₅ or (**4**)Cl₄ (50, 100, 200, 300 or 400 μ M). Viability tests were performed 24h post-treatment. Fluorescence values were normalized to those of non-treated cells.

	(2)(PF ₆) ₄	(3)(PF ₆) ₄	(4)(PF ₆) ₄
Formula	$C_{55}H_{36}N_{12}O_2Ru_2(PF_6)_4$	C ₆₁ H ₄₁ N ₁₂ O ₂ Ru ₂ (PF ₆) ₄	$C_{60}H_{42}N_{12}Ru_2(PF_6)_4$
FW	1678.98	1756.08	1713.08
Т (К)	100(3)	100(3)	100(3)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	<i>C</i> 2/c	<i>C</i> 2/c	<i>C</i> 2/c
a (Å)	23.5727(8)	23.830(2)	14.9492(14)
b (Å)	17.0533(5)	17.0667(16)	33.781(3)
<i>c</i> (Å)	18.1277(7)	18.275(2)	15.9327(11)
в (°)	104.936(4)	105.189(11)	97.180(8)
V (Å ³)	7041.0(4)	7172.8(13)	7982.9(12)
Ζ	4	4	4
$ ho_{ m calcd}$ (g cm ⁻³)	1.584	1.626	1.425
final <i>R</i> indices $[I>2\sigma(I)]$	<i>R</i> 1 = 0.0450	R1 = 0.0525	<i>R</i> 1 = 0.0721
	wR2 = 0.1130	wR2 = 0.1347	wR2 = 0.1311
R indices (all data)	R1 = 0.0509	R1 = 0.0762	<i>R</i> 1 = 0.1637
	wR2 =0.1156	wR2 =0.1533	wR2 =0.1868

Table S1: Crystallographic data for complexes [(trpy)Ru(tppz)Ru(trpy-CO₂H)](PF₆)₄, (**2**)(PF₆)₄; [(ptrpy)Ru(tppz)Ru(trpy-CO₂H)](PF₆)₄, (**3**)(PF₆)₄; [(ptrpy)Ru(tppz)Ru(trpy-CO₂H)](PF₆)₄, (**4**)(PF₆)₄, (**3**)(PF₆)₄; [(ptrpy)Ru(tppz)Ru(tppz)Ru(trpy-CO₂H)](PF₆)₄, (**3**)(PF₆)₄; [(ptrpy)Ru(tppz)R

Proton	(4)	(5)	(6)
[A]H3'H5'	9.23	9.23	8.97
[C][D] H3H3"	9.09	9.09	9.08
[F]H3'H5'	8.97	9.35	9.35
[B]H3H3"	8.78	8.78	8.68
[E]H3H3"	8.68	8.78	8.78
[F]4′	8.61	-	-
[A]H4'	-	-	8.64
[G]H6H2	8.27	8.27	-
[E]H4H4"	8.08	8.10	8.10
[B]H4H4"	8.07	8.08	8.06
[C][D]H4H4"	7.96	7.96	7.95
[B]H6H6"	7.90	7.90	7.85
[E]H6H6"	7.86	7.74	7.74
[G]H5H3	7.85	7.86	-
[G]H4	7.79	7.77	-
[C][D]H6H6"	7.73	7.79, 7.81	7.81
[C][D]H5H5"	7.45	7.46, 7.42	7.43
[E]H5H5"	7.32	7.37	7.37
[B]H5H5"	7.32	7.32	7.31
Lys ¹ Hα	-	4.30	4.30
Lys¹Hβ	-	1.89, 1.84	1.89, 1.84
Lys ¹ Hγ	-	1.49	1.49
Lys¹Hδ	-	1.71	1.71
Lys ¹ Hε	-	3.02	3.02
Gly¹Hα	-	4.10	4.07
Gly²Hα	-	3.93	3.93
Gly³Hα	-	3.88	3.88
Gly¹NH	-	9.15	9.16
Gly² NH	-	8.67	8.67
Gly ³ NH	-	8.77	8.77
Lys ¹ NH	-	8.39	8.39
cis-Lys ¹ CONH ₂	-	7.69	7.71
trans-Lys ¹ CONH ₂	-	7.13	7.14

Table S2: ¹H NMR chemical shifts (δ) in ppm of the complexes (**4**), (**5**) and (**6**) in aqueous (H₂O:D₂O, 9:1) buffer phosphates (100 mM, pH = 7.0) at 298 K ^a.

^a The proton numbering and the designation of the ligand rings are based in Fig. 2.

Table S3. ¹H NMR (500 MHz) resonances (ppm) of the free $d(5'-CGCGAATTCGC-3')_2$ in 100 mM phosphate buffer (pH 7.0), $H_2O:D_2O$ 9:1, at 298 K.

Base	H8/H6	H5/H2/ T-	H1′	H2′	H2″	H3′	H4'	N3H/N1H	NH ₂ (b)	NH₂(nb)
		CH ₃								
C1	7.60	5.88	5.72	1.94	2.39	4.67	4.03			
G2	7.92		5.88	2.61	2.68	4.94	4.31	13.02		
C3	7.25	5.35	5.58	1.82	2.26	4.78	4.12		8.41	6.42
G4	7.83		5.41	2.63	2.75	4.96	4.29	12.68		
A5	8.09	7.21	5.97	2.67	2.90	5.03	4.43			
A6	8.09	7.60	6.13	2.59	2.90	4.98	4.44			
T7	7.09	1.26	5.88	1.94	2.53	4.79	4.18	13.65		
Т8	7.35	1.51	6.08	2.15	2.53	4.87	4.17	13.78		
C9	7.44	5.60	5.65	2.04	2.40	4.84	4.12		8.40	6.80
G10	7.89		5.82	2.62	2.67	4.96	4.34	12.91		
C11	7.31	5.42	5.72	1.87	2.30	4.79	4.18		8.37	6.55
G12	7.92		6.13	2.36	2.62	4.65	4.14			

Table S4: ¹H NMR chemical shifts (δ) in ppm of the complexes (**4**), (**5**) and (**6**) upon addition to the oligonucleotide duplex d(CGCGAATTCGCG)₂ at 1:1 molar ratio, in aqueous buffer phosphates (100 mM, pH = 7.0) at 298 K ^a.

Proton	(4)	(5)	(6)
[A]H3'H5'	9.03 (-0.20)	9.10 (-0.13)	8.96 (-0.01)
[C][D] H3H3"	9.08 (-0.01)	9.12 (+0.03)	9.05 (+0.03)
[F]H3'H5'	8.93 (-0.04)	9.34 (-0.01)	9.34 (-0.01)
[B]H3H3"	8.60 (-0.18)	8.72 (-0.06)	8.67 (-0.01)
[E]H3H3"	8.65 (-0.03)	8.78 (0.00)	8.78 (0.00)
[F]4'	8.60 (-0.01)	-	-
[A]H4'	-	-	8.68 (+0.04)
[G]H6H2	8.00 (-0.27)	8.12 (-0.15)	-
[E]H4H4"	8.05 (-0.03)	8.14 (+0.04)	8.16 (+0.06)
[B]H4H4"	8.00(-0.07)	8.05 (-0.03)	8.08 (+0.02)
[C][D]H4H4"	7.95 (+0.01)	8.02 (+0.06)	8.01 (+0.06)
[B]H6H6''	7.80 (-0.10)	7.98 (+0.08)	7.87 (+0.02)
[E]H6H6"	7.79 (-0.07)	7.76 (+0.02)	7.75 (+0.01)
[G]H5H3	7.52 (-0.33)	7.72 (-0.14)	-
[G]H4	7.32 (-0.47)	7.42 (-0.35)	-
[C][D]H6H6"	7.71 (+0.02)	7.80, 7.82 (+0.01)	7.831 (+0.02)
[C][D]H5H5"	7.45 (0.00)	7.53, 7.49 (+0.07)	7.50 (+0.07)
[E]H5H5"	7.31 (+0.01)	7.41 (+0.04)	7.39 (+0.02)
[B]H5H5"	7.29(-0.03)	7.36 (+0.04)	7.33 (+0.02)
Lys ¹ Hα	-	4.33 (+0.03)	4.31 (+0.01)
Lys¹Hβ	-	1.90, 1.85 (+0.01)	1.90, 1.87 (+0.02)
Lys¹Hγ	-	1.48 (-0.01)	1.52 (+0.03)
Lys¹Hδ	-	1.72 (+0.01)	1.73 (+0.02)
Lys ¹ Hε	-	3.05 (+0.03)	3.04 (+0.02)
Gly¹Hα	-	4.15 (-0.05)	4.14 (+0.04)
Gly²Hα	-	3.96 (+0.03)	3.93 (0.00)
Glγ³Hα	-	3.88 (0.00)	3.85 (-0.03)
Gly¹NH	-	9.12 (-0.03)	9.13 (-0.03)
Gly² NH	-	8.72 (+0.05)	8.62 (-0.05)
Gly ³ NH	-	8.72 (-0.05)	8.75 (-0.02)
Lys ¹ NH	-	8.41 (+0.02)	8.32 (-0.07)

^a The proton numbering and the designation of the ligand rings are based in Fig. 2.

Table S5. Changes in d(5'-CGCGAATTCGC-3')₂ chemical shifts upon addition of (**4**) in molar ratio 1:1 [(δ ppm),100 mM phosphate buffer (*p*H 7.0), H₂O:D₂O = 9:1, 298 K.

Base	H8/H6	H5/H2/ T- CH ₃	H1'	H2′	H2"	N3H/N1H	NH ₂ (b)	NH₂(nb)
C1	(-0.01)	(-0.01)	(-0.02)	(-0.01	(-0.01)			
G2	(+0.01)		(-0.01)	(-0.01	(+0.01)	(-0.01)		
C3	(-0.01)	(+0.01)	(0.00)	(+0.01)	(+0.01)		(-0.01)	(-0.01)
G4	(+0.01)		(0.00)	(0.00)	2.75	(+0.01)		
A5	(-0.01)	(+0.01)	(-0.03)	(-0.03)	(-0.03)			
A6	(-0.01)	(-0.01)	(-0.05)	(-0.04)	(-0.07)			
T7	(-0.03)	(0.00)	(-0.03)	(-0.03)	(-0.05)	(-0.06)		
Т8	(-0.03)	(-0.01)	(-0.04)	(-0.06)	(-0.05)	(-0.06)		
C9	(0.00)	(0.00)	(-0.03)	(-0.06)	(-0.03)		(-0.01)	(0.00)
G10	(-0.01)		(-0.01)	(-0.02)	(-0.02)	(-0.00)		
C11	(0.00)	(-0.01)	(0.00)	(-0.01)	(-0.01)		(0.00)	(0.00)
G12	(-0.01)		(-0.01)	(-0.01)	(-0.02)			

Table S6. Changes in d(5'-CGCGAATTCGC-3')₂ chemical shifts upon addition of (**5**) in molar ratio 1:1 [(δ ppm),100 mM phosphate buffer (*p*H 7.0), H₂O:D₂O = 9:1, 298 K.

Base	H8/H6	H5/H2/ T-	H1′	H2′	H2″	N3H/N1H	NH ₂ (b)	NH ₂ (nb)
C1	(-0.01)	(-0.01)	(-0.02)	(-0.01	(-0.01)			
G2	(+0.01)		(-0.01)	(-0.01	(+0.01)	(-0.01)		
C3	(-0.02)	(0.00)	(-0.01)	(+0.01)	(+0.01)		(-0.01)	(-0.01)
G4	(0.00)		(0.00)	(0.00)	(0.00)	(+0.01)		
A5	(-0.01)	(+0.01)	(-0.03)	(-0.01)	(-0.02)			
A6	(-0.01)	(-0.01)	(-0.05)	(-0.00)	(-0.02)			
Т7	(-0.01)	(0.00)	(-0.06)	(-0.02)	(-0.01)	(-0.06)		
Т8	(-0.02)	(-0.01)	(-0.07)	(-0.01)	(0.00)	(-0.04)		
C9	(0.00)	(0.00)	(-0.01)	(-0.02)	(-0.01)		(-0.01)	(0.00)
G10	(-0.01)		(-0.01)	(-0.02)	(-0.02)	(-0.00)		
C11	(0.00)	(-0.01)	(0.00)	(-0.01)	(-0.01)		(0.00)	(0.00)
G12	(0.00)		(-0.01)	(-0.01)	(-0.02)			

Table S7. Changes in d(5'-CGCGAATTCGC-3')₂ chemical shifts upon addition of (6) in molar ratio 1:1 [(δ ppm),100 mM phosphate buffer (*p*H 7.0), H₂O:D₂O = 9:1, 298 K.

Base	H8/H6	H5/H2/ T- CH₃	H1′	H2′	H2"	N3H/N1H	NH ₂ (b)	NH ₂ (nb)
C1	(0.00)	(0.00)	(-0.01)	(+0.01)	(-0.01)			
G2	(+0.01)		(-0.01)	(-0.01)	(-0.01)	(-0.01)		
C3	(-0.01)	(0.00)	(-0.01)	(-0.01)	(+0.01)		(+0.01)	(0.00)
G4	(0.00)		(0.00)	(0.00)	(0.00)	(0.00)		
A5	(0.00)	(-0.01)	(-0.02)	(-0.01)	(+0.01)			
A6	(-0.01)	(-0.01)	(-0.01)	(-0.00)	(-0.02)			
T7	(-0.01)	(-0.01)	(-0.02)	(-0.02)	(-0.01)	(-0.01)		
Т8	(-0.01)	(-0.01)	(-0.01)	(-0.01)	(0.00)	(-0.01)		
C9	(0.00)	(0.00)	(-0.01)	(-0.01)	(-0.01)		(-0.01)	(0.00)
G10	(-0.01)		(0.00)	(0.00)	(-0.02)	(0.00)		
C11	(0.00)	(-0.01)	(0.00)	(0.00)	(-0.01)		(0.00)	(0.00)
G12	(0.00)		(-0.01)	(-0.01)	(-0.02)			