Electronic Supplementary Information

Modifying the Donor Properties of *Tris*(pyridyl)aluminates in Lanthanide (II) Sandwich Compounds

Raúl García-Rodríguez,^{a*} Sara Kopf,^b and Dominic S. Wright^b

⁷Li NMR spectrum of Lil-containing [EtAl(6-Me-2-py)₃]₂Yb (4·Lil)

Figure S1 ⁷Li NMR spectrum (+25 °C, 194 MHz, thf -d₈) of **4**·Lil. The spectroscopic properties for the $[EtAl(6-Me-2-py)_3]_2Yb$ complex in **4**·Lil are identical to those observed for **4** (see NMR spectra for compound **4**. Fig S12) with the exception of the presence of Lil(thf)₃ in the ⁷Li NMR (+25 °C, d₈-THF, 194 MHz), δ = 0.72 (s) ppm and the presence of thf in the ¹H NMR (+25 °C, d₈-thf, 400 MHz), δ = 3.62 (m, –CH₂–O, thf), 2.77 1.77 (m,–CH₂–, thf).

Figure S2 Stacked ¹H NMR spectra (+25 °C, 500 MHz, thf-d₈) comparing the differences in the chemical shift of the signals of compound **4** and its starting material (**1**). Coordination to Yb^{2+} results in a significant upfield shift of the 6-Me group by 1.1 ppm.

Figure S3 Stacked ¹H NMR spectra (+25 °C, 500 MHz, thf-d₈) comparing the differences in the chemical shifts of the signals of compound **7** and its starting material (**2**Li).

Figure S4 $^{1}H^{-1}H$ NOESY spectrum of a mixture of 1Li and 4 in thf-d₈. No chemical exchange was observed. See also Fig S5.

Figure S5 ¹H-¹H ROESY (ethyl region, left) and ¹H-¹H NOESY (ethyl region, right) spectra of a mixture of **1**Li and **4** in thf-d₈. Colour code: **4** (blue circles), **1**Li (red circles). No chemical exchange was observed.

Figure S6 1H DOSY spectrum of a mixture of aluminate 1Li, sandwich compound **4** and the half-sandwich **5** in THF-d₈ at 25 °C. Although several signals overlapped, the CH_2 groups of the three species appear in well separated regions (left). The diffusion coefficients of the three species follow the expected trend based on their hydrodynamic radii, which in turns reflects their relative sizes: **4**>**5**>**1**Li.

Note: A small amount of free 2-methylpyridine was also present (CH₃ group clearly observed at 2.46(s)).

Note 2: Dashed boxes and colours are guides to the eye.

Figure S7. ¹H NMR (+25 °C, thf-d₈, 500 MHz) and ⁷Li NMR (+25 °C, 194 MHz, THF-d₈) spectra (insert) of a solution of sandwich ytterbium complex [EtAl(6-Br-2-py)₃]₂Yb (**7**) (labelled as § in the spectra) in thf-d₈ before (blue spectrum) and 30 min after (red spectrum) the addition of 0.6 eqv of **1**Li (red spectrum). The reaction results in the formation of the heteroleptic Yb(II) sandwich compound [{EtAl(6-Me-2-py)₃}{EtAl(6-Br-2-py)₃}Yb] (**9**) and the formation of **2**Li (labelled as ***** in the spectra) in a 1:1 ratio. The assignments of the signals for the heteroleptic Yb(II) sandwich compound (**9**) which contains the 6-Me ligand **1** (blue) and the 6-Br ligand **2** (red) are labelled in the ¹H NMR spectrum following the atom labels shown in the figure.

Subsequent addition of further equivalents of **1**Li results in the complete disappearance of **7**, and eventually of **9**, along with the formation of $[EtAl(6-Me-2-py)_3]_2Yb$ (**4**) and **2**Li (*), see Figure S8.

Figure S8 Stacked ¹H NMR (+25 °C, thf-d₈, 500 MHz) spectra of a solution of the ytterbium sandwich complex [EtAl(6-Br-2py)₃]₂Yb (**7**) (labelled as § in the spectra): a) before the addition of **1**Li; b) after the addition of 0.6 eqv of **1**Li; c) after the addition of *ca* 1.5 eqv of **1**Li; and d) after the addition of *ca* 2 eqv of **1**Li. The reaction involves the initial formation of the heteroleptic Yb(II) sandwich compound [{EtAl(6-Me-2-py)₃}{EtAl(6-Br-2-py)₃}Yb] (**9**) and the formation of **2**Li (labelled as * in the spectra). Further addition of **1**Li results in the complete disappearance of **7**, and eventually of **9**, along with the formation of [EtAl(6-Me-2-py)₃]₂Yb (**4**) (labelled as \Box in the spectra) and **2**Li (*).

Note: All the spectra were taken after allowing enough reaction time to ensure that all [EtAl(6-Me-2-py)3]Li (1Li) could react completely.

Reaction key: $EtAl(6-Br-2-py)_3]_2Yb$ (**7**) = §; $[EtAl(6-Br-2-py)_3]Li$ (**2**Li) = *; $[EtAl(6-Me-2-py)_3]_2Yb$ (**4**) = \Box . The assignment of the signals of the heteroleptic Yb(II) sandwich compound $[{EtAl(6-Me-2-py)_3}{EtAl(6-Br-2-py)_3}Yb]$ (**9**) which contains the 6-Me ligand **1** (blue) and the 6-Br ligand **2** (red) are labelled in the ¹H NMR spectrum following the atom labels shown in the figure.

Figure S9 Stacked ¹H NMR spectra (+25°C, 500 MHz, THF-d₈) of the time evolution of the reaction of *ca* 2 equivalents of **1**Li with **7** in thf at room temperature to give [EtAl(6-Me-2-py)₃]₂Yb (**4**) and **2**Li. The reaction involves the heteroleptic Yb(II) sandwich compound [{EtAl(6-Me-2-py)₃}{EtAl(6-Br-2-py)₃}Yb] (**9**) as an intermediate. a) Yb(II) sandwich **7** before the addition of **1**Li; b) **15** min after the addition of **1**Li, most of **7** is consumed and there is still unreacted **1**Li. The ¹H NMR spectrum shows the formation of intermediate **7** along with concomitant formation of **2**Li. c) After **1** h, no appreciable amounts of the ytterbium sandwich complex **7** are observed, while the amount of **2**Li has increased and a small amount of homoleptic complex **4** is observed in addition to **9**. The signals of the heteroleptic Yb(II) sandwich compound [{EtAl(6-Me-2-py)₃}EtAl(6-Br-2-py)₃}Yb] (**9**) which contains the 6-Me ligand **1** (blue triangles) and the 6-Br ligand 2 (red triangles) are labelled in the ¹H NMR spectrum. The two spin systems were assigned with the help of a ¹H-¹H COSY experiment. The H₃ and H₄ pyridyl signals for both ligands in **7** are clearly resolved. However, while the H₃ and H₄ pyridyl signals do not overlap with their corresponding Li salts and/or Yb homoleptic sandwich complexs **9** decreases, and the concomitant formation of homoleptic complexs **4** and **2**Li is observed. e) After 36 h no heteroleptic complex **9** is observed and only homoleptic complex **4** and **2**Li are observed. See also Figures S10 and S11

Figure S10 Stacked ¹H NMR spectra of the 6-Me-Py region (+25°C, 500 MHz, THF-d₈) during the time evolution of the reaction of *ca* 2 equivalents of **1**Li with **7** in thf at room temperature to give [EtAl(6-Me-2-py)₃]₂Yb (**4**) and **2**Li. (see also Fig S12 for details). The 6-Me-Py region is particularly diagnostic since the greatest change in chemical shift among all the 6-Me ligand **1** signals is found for the 6-Me group: δ = 2.53 for **1**Li (square), δ = 1.60 for intermediate heteroleptic complex **9** (triangle) and δ = 1.44 for **4** (circle).

Figure S11 Stacked ⁷Li NMR spectra (+25°C, 500 MHz, THF-d₈) during the time evolution of the reaction of *ca* 2 equivalents of **1**Li with **7** in thf at room temperature to give $[EtAl(6-Me-2-py)_3]_2$ Yb (**4**) and **2**Li: a) before the addition of **1**Li, b) after *ca* 30 min and c) after 36 h.

NMR spectra for compound 4, [EtAl(6-Me-2-py)₃]₂Yb

Figure S12 ¹H NMR spectrum (+25 °C, 500 MHz, THF-d₈) of [EtAl(6-Me-2-py)₃]₂Yb (4).

Figure S13 ¹³C{¹H} NMR spectrum (+25 °C, 126 MHz, THF-d₈) of [EtAl(6-Me-2-py)₃]₂Yb (4).

Note: The broad signal at around 65ppm in the ²⁷Al NMR spectrum arises from the probe background.

Figure S15 ¹H-¹H COESY NMR spectrum (+25 °C, 500 MHz, THF-d₈) of [EtAl(6-Me-2-py)₃]₂Yb (**4**).

Figure S16¹H-¹³C HMQC NMR spectra (+25 °C, 500 MHz, THF-d₈) of $[EtAl(6-Me-2-py)_3]_2$ Yb (**4**). Direct observation of the Albonded C atoms was difficult in the ¹³C{¹H} spectrum due to their low-intensity broad resonances. However, a broad Al-CH₂ signal can be easily detected in the ¹H-¹³C HMQC NMR spectrum (insert).

Figure S17 ¹H-¹³C HMBC NMR spectra (+25 °C, 500 MHz, THF-d₈) of $[EtAl(6-Me-2-py)_3]_2$ Yb (**4**). Direct observation of Al-bonded C atoms was challenging in the ¹³C{¹H} spectrum due to their low-intensity broad resonances. However, a broad Al-C(2) signal can be easily detected in the ¹H-¹³C HMBC NMR spectrum (insert).

Figure S18 ¹H-¹H NOESY NMR spectrum (+25 °C, 500 MHz, THF-d₈) of [EtAl(6-Me-2-py)₃]₂Yb (**4**). Crosspeaks observed between the C(3)–H py proton and the Al–CH₂CH₃ protons, and between the Py–CH₃ protons and aromatic pyridyl protons (C(5)–H arise from intramolecular cross-relaxation of protons that are close to each other in space, confirming the presence of an Et–Al–Py linkage.

NMR spectra for compound 5, [EtAl(6-Me-2py)₃Ybl(thf)₂]

Figure S19 ¹H NMR spectrum (+25 °C, 126 MHz, THF-d₈) of $[EtAl(6-Me-2py)_3Ybl(thf)_2]$ (**5**). The signals of THF appear partially overlapped with the signals of THF-d₈.

Figure S20 ¹³C{¹H} NMR spectrum (+25 °C, 126 MHz, THF-d₈) of $[EtAl(6-Me-2py)_3Ybl(thf)_2]$ (5). The signals of THF (insert) appear partially overlapped with the signals of THF-d₈.

Note: The C(6)-CH₃ signal at 25.42 ppm overlapped with the THF-d₈ signal, but was detected through a 1 H- 13 C HMQC experiment (see Fig S22).

Note: The broad signal at around 65ppm in the ²⁷Al NMR spectrum arises from the probe background.

Figure S22 Selected regions of the ${}^{1}H{}^{-13}C$ HMQC NMR spectrum (+25 °C, 500 MHz, thf-d₈) of [EtAl(6-Me-2py)₃Ybl(thf)₂] (**5**). Left, a selected region showing that the C(6)-CH₃ signal at 25.42 ppm overlaps with the thf-d₈ signal, which is marked with a red circle. Right, the ethyl region, showing that the broad Al-CH₂ carbon resonance can be detected and definitively assigned. Note: The 1D ${}^{13}C{}^{1}H{}$ NMR spectrum processed with a line broadening (lb) of 20 Hz is shown as the 'external projection'.

Figure S23 Selected regions of the ${}^{1}H{}^{-13}C$ HMBC NMR spectrum (+25 °C, 500 MHz, THF-d₈) of [EtAl(6-Me-2py)₃Ybl(thf)₂] (**5**). The expansion shows that the broad Al-C(2) signal can be easily detected in the ${}^{1}H{}^{-13}C$ HMBC NMR spectrum. Note: The 1D ${}^{13}C{}^{1}H$ NMR spectrum processed with a line broadening (lb) of 20Hz is shown as the 'external projection'.

NMR spectra for compound 7, [EtAl(6-Br-2-py)₃]₂Yb

Figure S24 ¹H NMR spectrum (+25 °C, 400 MHz, thf-d₈) of $[EtAl(6-Br-2-py)_3]_2$ Yb (7).

Figure S25 ¹³C{¹H} NMR spectrum (+25 °C, 126 MHz, thf-d₈) of [EtAl(6-Br-2-py)₃]₂Yb (**7**). Direct observation of the Al-bonded C atoms was not possible in the ¹³C{¹H} spectrum due to their low-intensity broad resonances and the low solubility of **7**. However, their detection was possible through ¹H-¹³C HMQC and ¹H-¹³C HMBC NMR experiments (see Fig S28 and S29).

Figure S27 ¹H-¹H COSY NMR spectrum (+25 °C, 500 MHz, thf-d₈) of [EtAl(6-Br-2-py)₃]₂Yb (**7**).

Figure S28 ¹H-¹³C HMQC NMR spectrum (+25 °C, 500 MHz, thf-d₈) of $[EtAl(6-Br-2-py)_3]_2$ Yb (**7**). Direct observation of the Albonded C atoms was not possible in the ¹³C{¹H} spectrum due to their low-intensity broad resonances and the low solubility of **7**. However, the broad ¹³C signal for Al-CH₂ was detected in the ¹H-¹³C HMQC NMR spectrum (insert).

Figure S29 ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC NMR spectrum (+25 °C, 500 MHz, THF-d₈) of [EtAl(6-Br-2-py)₃]₂Yb (**7**). Direct observation of Albonded C atoms was not possible in the ${}^{13}\text{C}{}^{1}\text{H}$ spectrum due to their low-intensity broad resonances and low solubility of **7**. However, the broad ${}^{13}\text{C}$ signal for Al-C2 was detected in the ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC NMR spectrum (insert).

X-ray crystal structures of compounds

X-ray Crystallographic Studies

Data were collected using Bruker Apex,2 Bruker APEX3 or GIS, processed using SAINT and SADABS. Structures were solved using SHELXT (Sheldrick, 2015) and refined using SHELXL (Sheldrick, 2015).

Compound	3·Lil	4·Lil	3	4	5.thf	6 ∙2thf
chemical formula	$C_{56}H_{62}Al_2Eul_2Li_2N_6O_4$	$C_{64}H_{94}Al_2I_2Li_2N_6O_6Yb$	$C_{40}H_{46}AI_{2}EuN_{6}$	$C_{40}H_{46}Al_2N_6Yb$	C ₂₈ H ₃₉ AllN ₃ O ₂ Yb •thf	C ₃₄ H ₂₈ Al₂Br ₆ EuN ₆ ∙2thf
FW	1372.85	1538.13	816.75	837.83	848.64	1350.21
crystal system	triclinic	triclinic	tetragonal	monoclinic	monoclinic	Triclinic
space group	P-1	P-1	P 4 ₃ 2 ₁ 2	P21/n	P2₁/m	P -1
a (Å)	9.4740(2)	9.6229(3)	10.5238(2)	11.732(2)	10.9332(3)	10.8508(2)
b (Å)	10.4528(2)	10.7281(4)	10.5238(2)	19.517(3)	14.2445(5)	10.9222(2)
<i>c</i> (Å)	17.1753(4)	17.8161(6)	35.4237(7)	16.296(3)	11.6132(4)	11.6496(3)
α (°)	98.918(1)	97.034(2)	90	90	90	92.214(1)
в (°)	102.051(1)	105.055(2)	90	96.376(6)	105.9277(4)	113.358(1)
γ (°)	108.705(1)	97.684(2)	90	90	90	108.481(1)
V (Å ³)	1529.62(6)	1736.27(10)	3923.19(17)	3708.2(11)	1739.18(10)	1180.53(4)
Ζ	1	1	4	4	2	1
Radiation	ΜοΚα	CuKα	CuKα	ΜοΚα	CuKα	ΜοΚα
Т (К)	220(2)	180(2)	180(2)	199(2)	180(2)	180(2)
$ ho_{calc}$ (g/cm ³)	1.490	1.471	1.383	1.501	1.621	1.899
μ (mm⁻¹)	2.109	10.110	12.144	2.607	12.449	6.484
reflections	16615	23992	21577	22486	21396	12740
collected (R _{int})	(0.038)	(0.045)	(0.088)	(0.133)	(0.079)	(0.049)
independent	6772	5808	3464	6409	3205	5257
reflections	0772					5257
$R_1[I>2\sigma(I)]$	0.0377	0.0431	0.0405	0.0652	0.0497	0.0459
wR ₂ (all data)	0.0828	0.1045	0.0756	0.1585	0.1400	0.1421
Goodness of fit, S	1.050	1.013	1.010	1.000	1.081	0.949
Flack parameter			-0.012(4)			
CCDC number	1587534	1587538	1587533	1587535	1587537	1587536

Table S1 Details of the data collection and refinement of compounds 1-6·THF

Table S2 Comparison of selected bond lengths (Å) and angles (°) for the 2-py ligands

Compound	3•Lil	4•Lil	3	4	5∙thf	6•2thf
C _{Et} -Al	1.988(4)	1.994(5)	1.996(6)	1.96(1)-1.97(1)	1.98(1)	1.994(5)
C _{py} –Al	2.014(4)-2.036(4)	2.007(5)-2.023(5)	2.010(6)-2.025(7)	1.96(1)-2.02(1)	2.022(7)-2.035(5)	2.010(5)-2.019(6)
Al…Ln	3.564(1)	3.459(1)	3.565(2)	3.431(3)-3.444(3)	3.448(3)	3.807(6)
N ₁ -Ln	2.693(3)	2.564(4)	2.713(6)	2.542(8)-2.546(7)	2.505(8)	2.795(4)
N ₂ -Ln	2.696(3)	2.611(4)	2.674(5)	2.560(8)-2.587(9)	2.534(5)	2.756(4)
N ₃ -Ln	2.689(3)	2.575(4)	2.655(6)	2.585(8)-2.585(9)	2.534(5)	2.754(4)
C _{py} -Al-C _{py}	104.6(2)-113.4(1)	105.6(2)-112.4(2)	101.6(2)-112.1(3)	101.6(2)-112.1(3)	104.3(4)-108.7(2)	105.8(2)-111.5(3)
AI-C _{py} -N	121.4(4)- 123.8(3)	120.3(2)-123.9(3)	119.7(5)-123.8(4)	121.7(7)–124.7(7)	119.1(6)-121.7(5)	120.3(4)-124.0(4)
N-Ln-N	88.5 (1)- 91.51(9)	85.6(1)-94.4(1)	85.4(2)-91.1(2)	84.7(3)-94.7(3)	82.0(3)-98.7(2)	84.1(1)-95.9(1)

Figure **S30** X-ray crystal structure of [EtAl(6-Me-2-py)₃]₂Eu (**3**). H-atoms have been omitted for clarity.

Figure S31 X-ray crystal structure of [EtAl(6-Me-2-py)₃]₂Yb (4). H-atoms have been omitted for clarity.

Figure S32 (left) the $[thf_2Li(\mu-I)]_2$ dimer units of 3·LiI; (right) the $(thf)_3LiI$ units of 4·LiI.