## Supporting information

## Three Zn( II )-based MOFs for luminescence sensing of Fe<sup>3+</sup> and Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> ions

Zhi-Zun Xiao, Li-Juan Han, Zhong-Jie Wang and He-Gen Zheng\*

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China. E-mail: <u>zhenghg@nju.edu.cn</u>; Fax: (+86)25-83314502

## **Experimental section.**

Materials and Methods: Reagents and solvents employed were commercially available. IR spectra of the complexes were recorded on a Nicolet (Impact 410) spectrometer with KBr pellets (5 mg of the sample in 300 mg of KBr) in the range of 400-4000 cm<sup>-1</sup>. C, H and N elemental analyses were carried out with a Perkin Elmer 240C elemental analyzer. The as-synthesized complexes were characterized by thermo gravimetric analysis (TGA) on a Perkin Elmer thermo gravimetric analyzer Pyris 1 TGA up to 923 K using a heating rate of 10 K min<sup>-1</sup> under a N<sub>2</sub> atmosphere. Powder X-ray diffraction (PXRD) measurements were performed on a Bruker D8 Advance X-ray diffractometer using Cu-K  $\alpha$  radiation ( $\lambda$ =0.71073 Å), and the X-ray tube was operated at 40 kV and 40 mA.

**X-ray crystallography.** Single crystals of compound 1, 2 and 3 were collected on a Bruker SMART APEX CCD diffractometer using graphite monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 296 K. The crystal and refined data are collected in Table S1. Selective bond distances and angles are given in Table S2.

| Compound                                | 1                      | 2                      | 3                                                   |
|-----------------------------------------|------------------------|------------------------|-----------------------------------------------------|
| Empirical formula                       | $C_{40}H_{50}N_2O_6Zn$ | $C_{33}H_{37}N_2O_8Zn$ | C <sub>30</sub> H <sub>28</sub> NO <sub>7</sub> SZn |
| Formula weight                          | 720.19                 | 655.01                 | 611.96                                              |
| Crystal system                          | triclinic              | monoclinic             | monoclinic                                          |
| Space group                             | P-1                    | P2(1)/c                | C2/c                                                |
| a / Å                                   | 6.1957(6)              | 9.2019(4)              | 15.8925(14)                                         |
| b / Å                                   | 15.4084(14)            | 13.4743(6)             | 20.4648(19)                                         |
| c / Å                                   | 19.6221(19)            | 25.3334(10)            | 21.081(2)                                           |
| α/°                                     | 98.194(2)              | 90                     | 90                                                  |
| β/ °                                    | 91.550(2)              | 90.4121(11)            | 106.8200(10)                                        |
| γ/ °                                    | 100.009(2)             | 90                     | 90                                                  |
| V / Å <sup>3</sup>                      | 1823.3(3)              | 3141.0(2)              | 6563.1(11)                                          |
| Ζ                                       | 2                      | 4                      | 8                                                   |
| D <sub>calcd</sub> / g cm <sup>-3</sup> | 1.312                  | 1.385                  | 1.239                                               |
| μ / mm <sup>-1</sup>                    | 0.722                  | 0.836                  | 0.853                                               |
| F(000)                                  | 764                    | 1372                   | 2536                                                |
| $\theta$ min-max / °                    | 2.761 to 27.831        | 2.207 to 27.733        | 1.668 to 25.027                                     |
| Tot., uniq. Data                        | 15316 / 8481           | 27618 / 7221           | 18403 / 5588                                        |
| R(int)                                  | 0.0387                 | 0.0411                 | 0.0615                                              |
| Nref, Npar                              | 8481, 445              | 7221, 419              | 5588, 379                                           |
| R1, wR2 $[I > 2\sigma(I)]$              | 0.0588, 0.1537         | 0.0352, 0.0883         | 0.0475, 0.1173                                      |
| GOF on F2                               | 1.088                  | 1.028                  | 1.025                                               |
| Largest diff. peak and                  | hole (e·Å-3)           |                        |                                                     |
|                                         | 1.935 and -0.798       | 0.316 and -0.628       | 0.291 and -0.459                                    |

Table S1. Crystal data and structure refinement for Compound 1-3

 $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma ||Fo|; wR_2 = [\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w Fo^4]^{1/2}$ 

| Table S2. Selected bond lengths (Å) | and angles (° | ) for Compound 1 |
|-------------------------------------|---------------|------------------|
|-------------------------------------|---------------|------------------|

|                 | 1          |
|-----------------|------------|
| N(1)-Zn(1)      | 2.041(3)   |
| N(3)-Zn(1)      | 2.037(3)   |
| O(5)-Zn(1)      | 1.950(3)   |
| O(6)-Zn(1)      | 1.926(3)   |
| O(6)-Zn(1)-O(5) | 101.67(13) |
| O(6)-Zn(1)-N(3) | 117.87(13) |
| O(5)-Zn(1)-N(3) | 105.13(12) |
| O(6)-Zn(1)-N(1) | 106.48(12) |
| O(5)-Zn(1)-N(1) | 120.41(13) |
| N(3)-Zn(1)-N(1) | 106.06(12) |

Symmetry codes: for 1: #1 = -x+2, -y+1, -z+1; #2 = -x-1, -y, -z; #3 = -x, -y+2, -z+1; #4 = -x+2, -y+1; #4 = -x+2, -x+2; #4 = -x+2, -x+2; #4 = -x+2; #4

*x*+2, -*y*+1, -*z*.

|                     | 2          |  |
|---------------------|------------|--|
| N(3)-Zn(1)          | 2.0099(15) |  |
| O(5)-Zn(1)#2        | 2.0499(15) |  |
| O(6)-Zn(1)#3        | 2.0593(13) |  |
| O(9)-Zn(1)#4        | 2.0414(14) |  |
| O(21)-Zn(1)         | 2.0276(13) |  |
| Zn(1)-Zn(1)#3       | 2.9008(4)  |  |
| N(3)-Zn(1)-O(21)    | 103.17(6)  |  |
| N(3)-Zn(1)-O(9)#5   | 99.22(6)   |  |
| O(21)-Zn(1)-O(9)#5  | 87.54(6)   |  |
| N(3)-Zn(1)-O(5)#6   | 99.89(6)   |  |
| O(21)-Zn(1)-O(5)#6  | 89.40(6)   |  |
| O(9)#5-Zn(1)-O(5)#6 | 160.85(5)  |  |
| N(3)-Zn(1)-O(6)#3   | 95.88(6)   |  |
| O(21)-Zn(1)-O(6)#3  | 160.77(6)  |  |
| O(9)#5-Zn(1)-O(6)#3 | 86.84(6)   |  |
| O(5)#6-Zn(1)-O(6)#3 | 89.90(6)   |  |

Symmetry codes: for 1: #1 = -x, -y+1, -z+1; #2 = x, -y+1/2, z+1/2; #3 = -x+2, -y, -z+1;

#4 = -x+2, y+1/2, -z+3/2; #5 = -x+2, y-1/2, -z+3/2; #6 = x, -y+1/2, z-1/2.

|                     | 3          |  |
|---------------------|------------|--|
| O(5)-Zn(1)#1        | 2.042(3)   |  |
| O(4)-Zn(1)#2        | 2.037(3)   |  |
| O(1)-Zn(1)          | 2.041(3)   |  |
| Zn(1)-N(1)          | 2.021(3)   |  |
| Zn(1)-N(1)          | 2.024(3)   |  |
| Zn(1)-O(7)#3        | 2.084(3)   |  |
| Zn(1)-Zn(1)#3       | 2.9912(8)  |  |
| N(1)-Zn(1)-O(4)#2   | 101.15(12) |  |
| N(1)-Zn(1)-O(1)     | 107.30(12) |  |
| O(4)#2-Zn(1)-O(1)   | 88.82(12)  |  |
| N(1)-Zn(1)-O(5)#5   | 100.12(12) |  |
| O(4)#2-Zn(1)-O(5)#5 | 158.28(10) |  |
| O(1)-Zn(1)-O(5)#5   | 89.03(12)  |  |
| N(1)-Zn(1)-O(7)#3   | 94.25(12)  |  |
| O(4)#2-Zn(1)-O(7)#3 | 88.60(12)  |  |
| O(1)-Zn(1)-O(7)#3   | 158.39(12) |  |
| O(5)#5-Zn(1)-O(7)#3 | 85.48(12)  |  |

Symmetry codes: for 1: #1 = *x*+1/2, *y*+1/2, *z*; #2 = -*x*+1, -*y*+1, -*z*+1; #3 = -*x*+1/2, -*y*+1/2, -*z*+1; #4 = -*x*+1, -*y*, -*z*+2; #5 = *x*-1/2, *y*-1/2, *z*.

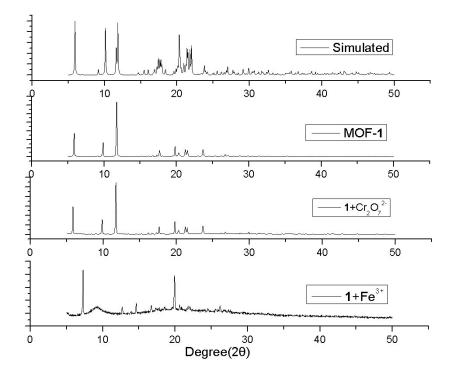



Figure S1 PXRD of 1 before and after immersed in  $Cr_2O_7^{2-}$  /  $Fe^{3+}$  for 10 hours.

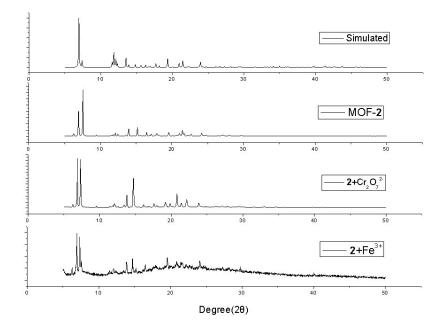



Figure S2 PXRD of 2 before and after immersed in  $Cr_2O_7^{2-}$  / Fe<sup>3+</sup> for 10 hours.

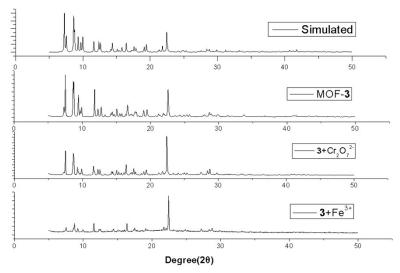



Figure S3 PXRD of 3 before and after immersed in  $Cr_2O_7^{2-}$  / Fe<sup>3+</sup> for 10 hours.



Figure S4 IR spectra of H<sub>2</sub>L ligand.

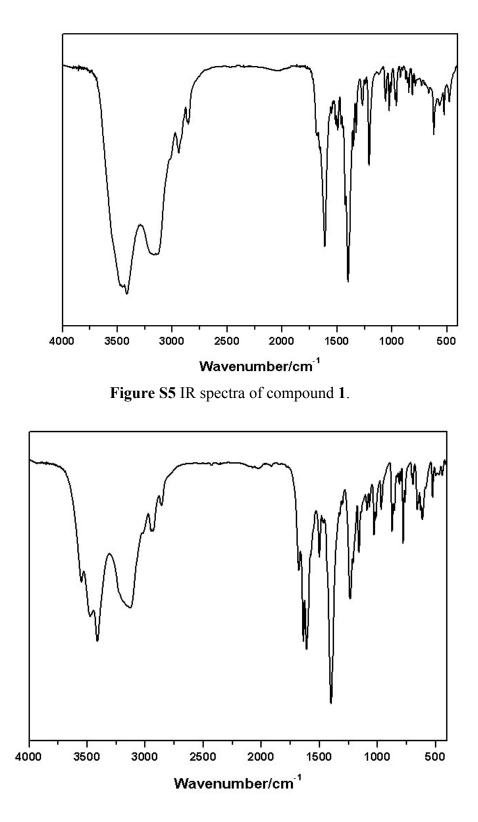



Figure S6 IR spectra of compound 2.

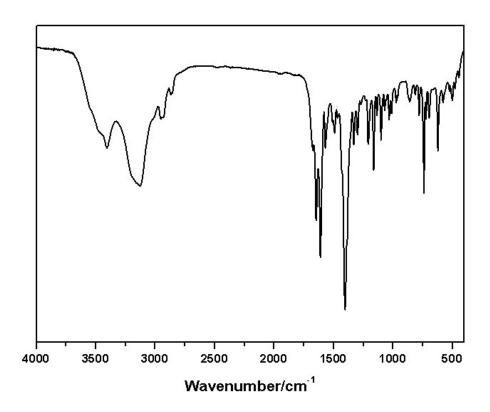



Figure S7 IR spectra of compound 3.

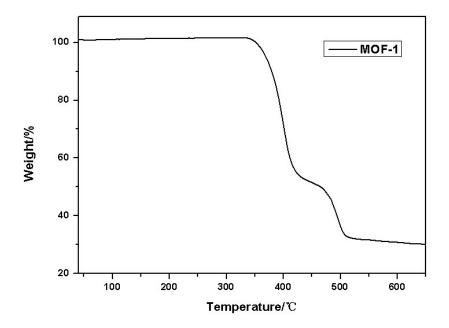



Figure S8 The TGA diagrams of compound 1.

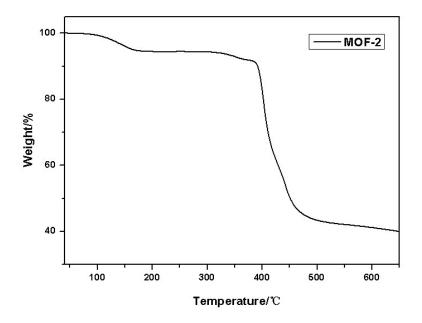



Figure S9 The TGA diagrams of compound 2.

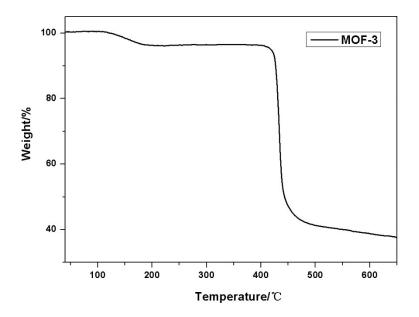



Figure S10 The TGA diagrams of compound 3.

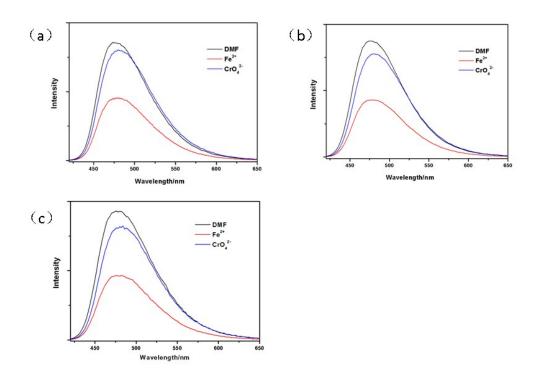



Figure S11 (a) - (c) Fluorescence spectra of MOFs 1–3 (DMF suspension, 2.0 mL) added FeSO<sub>4</sub> (5 × 10<sup>-2</sup> M, 50  $\mu$ L) and Na<sub>2</sub>CrO<sub>4</sub> (5 × 10<sup>-3</sup> M, 100  $\mu$ L).

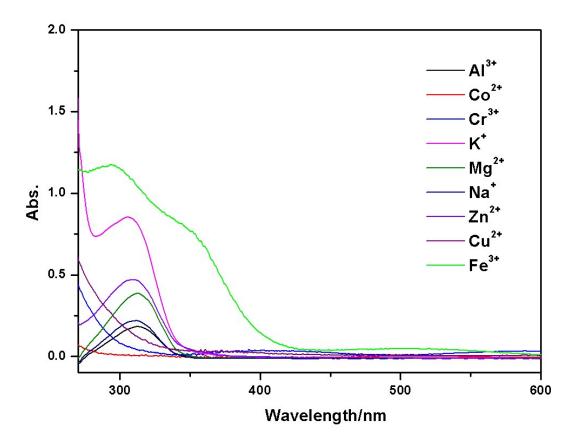



Figure S12 Liquid UV-vis spectra of different metal cations in DMF.

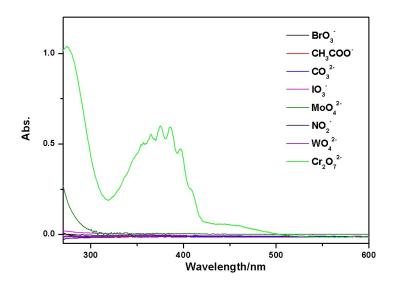



Figure S13 Liquid UV-vis spectra of different inorganic anions in DMF.

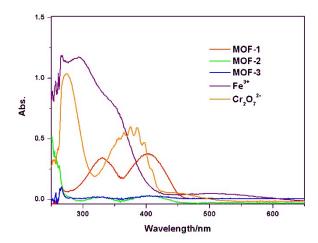



Figure S14 Liquid UV-vis spectra of MOFs 1-3,  $Fe^{3+}$  and  $Cr_2O_7^{2-}$  in DMF.