Supporting Information

Syntheses, Structures and Efficient Visible Light Driven Photocatalytic Properties of Layered Cuprous Halides Based on Two Types of Building

Units

Ai-Huan Sun,^a Qi Wei,^a Ai-Ping Fu,^b Song-De Han,^a Jin-Hua Li^a and Guo-Ming Wang*,^a

^aCollege of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China

^bLaboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Shandong 266071, P. R. China

Table S1. Selected bond lengths (Å) for compounds 1-3.

Figure S1. IR spectra of compounds 1-3.

Figure S2. Experimental and simulated PXRD patterns of compounds 1-3.

Figure S3. The solid NMR spectroscopy of compound 2.

Figure S4. The asymmetric units and the coordination environment of Cu atoms of 1 (a) and of 3 (b).

Figure S5. (a) View of the 16-MR window in **1** with the diameter of ~13.7×23.5 Å². (b) View of the 16-MR window in **2** with the diameter of ~14.0×23.7 Å². $[Et_3TPT]^{3+}$ in **2** is larger than the $[Me_3TPT]^{3+}$ in **1** in size, which results in larger windows in the layer of **2**.

Figure S6. The band gap obtained from optical spectra.

Figure S7. The effects of different scavengers (BQ: benzoquinone, AO: ammonium oxalate, TBA: *tert*-butyl alcohol) on MO under visible-light irradiation.

Figure S8. Band structures of compounds 1 (a) and 3 (b).

Figure S9. TG curves of compounds 1-3.

Compound 1			
Cu(1)-I(1)	2.5259(12)	Cu(3)-I(6)	2.6590(11)
Cu(1)-I(2)	2.5373(12)	Cu(3)-I(5)	2.6706(12)
Cu(1)-I(5)#1	2.5029(12)	Cu(4)-I(6)	2.5065(12)
Cu(2)-I(2)	2.7820(14)	Cu(4)-I(7)	2.5718(13)
Cu(2)-I(3)	2.6057(12)	Cu(4)-I(8)	2.6230(12)
Cu(2)-I(4)	2.6754(12)	Cu(5)-I(1)#2	2.6122(12)
Cu(2)-I(4)#1	2.6154(12)	Cu(5)-I(8)	2.6644(12)
Cu(3)-I(3)	2.6127(11)	Cu(5)-I(7)	2.6691(12)
Cu(3)-I(4)	2.6272(12)	Cu(5)-I(2)#2	2.6878(12)
Compound 2			
Cu(1)-I(1)	2.6455(15)	Cu(3)-I(8)	2.6708(15)
Cu(1)-I(4)	2.6494(15)	Cu(3)-I(5)	2.6808(15)
Cu(1)-I(2)	2.6607(15)	Cu(4)-I(7)	2.5944(15)
Cu(1)-I(3)	2.7026(15)	Cu(4)-I(6)#1	2.6123(16)
Cu(2)-I(5)	2.5133(14)	Cu(4)-I(6)	2.6667(16)
Cu(2)-I(3)	2.5381(14)	Cu(4)-I(3)#1	2.8465(18)
Cu(2)-I(4)	2.5697(15)	Cu(5)-I(8)	2.5062(16)
Cu(3)-I(7)	2.6205(15)	Cu(5)-I(1)#2	2.5639(16)
Cu(3)-I(6)	2.6316(14)	Cu(5)-I(2)#2	2.6139(15)
Compound 3			
Cu(1)-Br(1)	2.348(2)	Cu(3)-Br(6)	2.4021(16)
Cu(1)-Br(2)	2.503(3)	Cu(4)-Br(2)	2.679(2)
Cu(1)-Br(8)#2	2.401(2)	Cu(4)-Br(2)#1	2.5413(19)
Cu(2)-Br(1)	2.5033(16)	Cu(4)-Br(3)#1	2.4154(16)
Cu(2)-Br(2)	2.6373(16)	Cu(4)-Br(5)	2.4100(17)
Cu(2)-Br(3)	2.4326(16)	Cu(5)-Br(6)	2.4260(17)
Cu(2)-Br(4)	2.4194(15)	Cu(5)-Br(7)	2.3151(16)
Cu(3)-Br(4)	2.3584(17)	Cu(5)-Br(8)	2.4330(18)
Cu(3)-Br(5)	2.3483(16)		

Table S1. Selected bond lengths (Å) for compounds 1-3.

Symmetry codes: For 1: (#1) -x+1,-y+1,-z; (#2) -x+1/2,y+1/2,-z+1/2. For 2: (#1) -x,-y,-z; (#2) x+1/2,-y+1/2,z-1/2. For 3: (#1) -x+1,-y,-z; (#2) x-1/2,-y+1/2,z+1/2.

Figure S1. IR spectra of compounds 1-3.

Figure S2. Experimental and simulated PXRD patterns of compounds 1 (a), 2 (b) and 3 (c).

Figure S3. The solid ¹³C NMR spectroscopy of compound 2.

Figure S4 The asymmetric units and the coordination environment of Cu atoms of **1** (a) and of **3** (b). Symmetry operation for **1**: (A) 1-x, -1-y, -z; (B) -1+x, -1.5-y, -0.5+z. Symmetry operation for **3**: (A) 1-x, -y, -z; (B) 0.5+x, 0.5-y, -0.5+z.

Figure S5. (a) View of the 16-MR window in **1** with the diameter of ~13.7×23.5 Å². (b) View of the 16-MR window in **2** with the diameter of ~14.0×23.7 Å². [Et₃TPT]³⁺ in **2** is larger than the [Me₃TPT]³⁺ in **1** in size, which results in larger windows in the layer of **2**.

Figure S6. The band gap obtained from optical spectra. ((a) is $[F(R\infty) hv]^2$ versus hv, and (b) is $[F(R\infty) (hv)]^{1/2}$ versus hv).

Figure S7. The effects of different scavengers (BQ: benzoquinone, AO: ammonium oxalate, TBA: *tert*-butyl alcohol) on MO under visible-light irradiation.

Figure S8. Band structures of compounds 1 (a) and 3 (b).

Figure S9. TG curves of compounds 1 (a), 2 (b) and 3 (c).