Supporting Information

Syntheses, Structures and Efficient Visible Light Driven Photocatalytic
 Properties of Layered Cuprous Halides Based on Two Types of Building

Units

Ai-Huan Sun, ${ }^{\text {a }}$ Qi Wei, ${ }^{\text {a }}$ Ai-Ping Fu, ${ }^{\mathrm{b}}$ Song-De Han, ${ }^{\text {a }}$ Jin-Hua Li ${ }^{\mathrm{a}}$ and Guo-Ming Wang*,a
${ }^{a}$ College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China
${ }^{b}$ Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Shandong 266071, P. R. China

Table S1. Selected bond lengths (\AA) for compounds 1-3.
Figure S1. IR spectra of compounds 1-3.
Figure S2. Experimental and simulated PXRD patterns of compounds 1-3.
Figure S3. The solid NMR spectroscopy of compound 2.
Figure S4. The asymmetric units and the coordination environment of Cu atoms of $\mathbf{1}$ (a) and of $\mathbf{3}$ (b).
Figure S5. (a) View of the $16-\mathrm{MR}$ window in 1 with the diameter of $\sim 13.7 \times 23.5 \AA^{2}$. (b) View of the $16-\mathrm{MR}$ window in $\mathbf{2}$ with the diameter of $\sim 14.0 \times 23.7 \AA^{2}$. $\left[\mathrm{Et}_{3} \mathrm{TPT}\right]^{3+}$ in $\mathbf{2}$ is larger than the $\left[\mathrm{Me}_{3} \mathrm{TPT}\right]^{3+}$ in $\mathbf{1}$ in size, which results in larger windows in the layer of 2.

Figure S6. The band gap obtained from optical spectra.
Figure S7. The effects of different scavengers (BQ: benzoquinone, AO: ammonium oxalate, TBA: tert-butyl alcohol) on MO under visible-light irradiation.
Figure S8. Band structures of compounds 1 (a) and 3 (b).
Figure S9. TG curves of compounds 1-3.

Table S1. Selected bond lengths (\AA) for compounds 1-3.

Compound 1			
$\mathrm{Cu}(1)-\mathrm{I}(1)$	2.5259(12)	$\mathrm{Cu}(3)-\mathrm{I}(6)$	2.6590(11)
$\mathrm{Cu}(1)-\mathrm{I}(2)$	2.5373(12)	$\mathrm{Cu}(3)-\mathrm{I}(5)$	2.6706(12)
$\mathrm{Cu}(1)-\mathrm{I}(5) \# 1$	2.5029(12)	$\mathrm{Cu}(4)-\mathrm{I}(6)$	2.5065(12)
$\mathrm{Cu}(2)-\mathrm{I}(2)$	2.7820 (14)	$\mathrm{Cu}(4)-\mathrm{I}(7)$	2.5718(13)
$\mathrm{Cu}(2)-\mathrm{I}(3)$	2.6057(12)	$\mathrm{Cu}(4)-\mathrm{I}(8)$	2.6230(12)
$\mathrm{Cu}(2)-\mathrm{I}(4)$	2.6754(12)	$\mathrm{Cu}(5)-\mathrm{I}(1) \# 2$	2.6122(12)
$\mathrm{Cu}(2)-\mathrm{I}(4) \# 1$	2.6154(12)	$\mathrm{Cu}(5)-\mathrm{I}(8)$	2.6644(12)
$\mathrm{Cu}(3)-\mathrm{I}(3)$	2.6127(11)	$\mathrm{Cu}(5)-\mathrm{I}(7)$	2.6691(12)
$\mathrm{Cu}(3)-\mathrm{I}(4)$	2.6272(12)	$\mathrm{Cu}(5)-\mathrm{I}(2) \# 2$	2.6878(12)
Compound 2			
$\mathrm{Cu}(1)-\mathrm{I}(1)$	2.6455(15)	$\mathrm{Cu}(3)-\mathrm{I}(8)$	2.6708(15)
$\mathrm{Cu}(1)-\mathrm{I}(4)$	2.6494(15)	$\mathrm{Cu}(3)-\mathrm{I}(5)$	2.6808(15)
$\mathrm{Cu}(1)-\mathrm{I}(2)$	2.6607(15)	$\mathrm{Cu}(4)-\mathrm{I}(7)$	2.5944(15)
$\mathrm{Cu}(1)-\mathrm{I}(3)$	2.7026(15)	$\mathrm{Cu}(4)-\mathrm{I}(6) \# 1$	2.6123(16)
$\mathrm{Cu}(2)-\mathrm{I}(5)$	2.5133(14)	$\mathrm{Cu}(4)-\mathrm{I}(6)$	2.6667(16)
$\mathrm{Cu}(2)-\mathrm{I}(3)$	2.5381(14)	$\mathrm{Cu}(4)-\mathrm{I}(3) \# 1$	2.8465(18)
$\mathrm{Cu}(2)-\mathrm{I}(4)$	2.5697(15)	$\mathrm{Cu}(5)-\mathrm{I}(8)$	2.5062(16)
$\mathrm{Cu}(3)-\mathrm{I}(7)$	2.6205(15)	$\mathrm{Cu}(5)-\mathrm{I}(1) \# 2$	2.5639(16)
$\mathrm{Cu}(3)-\mathrm{I}(6)$	2.6316(14)	$\mathrm{Cu}(5)-\mathrm{I}(2) \# 2$	2.6139(15)
Compound 3			
$\mathrm{Cu}(1)-\mathrm{Br}(1)$	2.348(2)	$\mathrm{Cu}(3)-\mathrm{Br}(6)$	2.4021(16)
$\mathrm{Cu}(1)-\mathrm{Br}(2)$	2.503(3)	$\mathrm{Cu}(4)-\mathrm{Br}(2)$	2.679(2)
$\mathrm{Cu}(1)-\mathrm{Br}(8) \# 2$	2.401(2)	$\mathrm{Cu}(4)-\mathrm{Br}(2) \# 1$	2.5413(19)
$\mathrm{Cu}(2)-\mathrm{Br}(1)$	2.5033(16)	$\mathrm{Cu}(4)-\mathrm{Br}(3) \# 1$	2.4154(16)
$\mathrm{Cu}(2)-\mathrm{Br}(2)$	2.6373(16)	$\mathrm{Cu}(4)-\mathrm{Br}(5)$	2.4100(17)
$\mathrm{Cu}(2)-\mathrm{Br}(3)$	2.4326(16)	$\mathrm{Cu}(5)-\mathrm{Br}(6)$	2.4260(17)
$\mathrm{Cu}(2)-\mathrm{Br}(4)$	2.4194(15)	$\mathrm{Cu}(5)-\mathrm{Br}(7)$	2.3151(16)
$\mathrm{Cu}(3)-\mathrm{Br}(4)$	2.3584(17)	$\mathrm{Cu}(5)-\mathrm{Br}(8)$	2.4330(18)
$\mathrm{Cu}(3)-\mathrm{Br}(5)$	2.3483(16)		

Symmetry codes: For 1: (\#1) $-x+1,-y+1,-z$; (\#2) $-x+1 / 2, y+1 / 2,-z+1 / 2$. For 2: (\#1) $-x,-y,-z ;(\# 2)$ $x+1 / 2,-y+1 / 2, z-1 / 2$. For 3: (\#1) $-x+1,-y,-z ;$ (\#2) $x-1 / 2,-y+1 / 2, z+1 / 2$.

Figure S1. IR spectra of compounds 1-3.

Figure S2. Experimental and simulated PXRD patterns of compounds $\mathbf{1}$ (a), 2 (b) and $\mathbf{3}$ (c).

Figure S3. The solid ${ }^{13} \mathrm{C}$ NMR spectroscopy of compound 2.

Figure S4 The asymmetric units and the coordination environment of Cu atoms of $\mathbf{1}$ (a) and of $\mathbf{3}$ (b). Symmetry operation for 1: (A) $1-x,-1-y,-z$; (B) $-1+x,-1.5-y,-0.5+z$. Symmetry operation for 3: (A) $1-x,-y,-z$; (B) $0.5+x$, $0.5-y,-0.5+z$.

Figure S5. (a) View of the $16-\mathrm{MR}$ window in 1 with the diameter of $\sim 13.7 \times 23.5 \AA^{2}$. (b) View of the $16-\mathrm{MR}$ window in $\mathbf{2}$ with the diameter of $\sim 14.0 \times 23.7 \AA^{2}$. $\left[\mathrm{Et}_{3} \mathrm{TPT}\right]^{3+}$ in $\mathbf{2}$ is larger than the $\left[\mathrm{Me}_{3} \mathrm{TPT}\right]^{3+}$ in $\mathbf{1}$ in size, which results in larger windows in the layer of 2.

Figure S6. The band gap obtained from optical spectra. ((a) is $[\mathrm{F}(\mathrm{R} \infty) h v]^{2}$ versus $h v$, and (b) is $[\mathrm{F}(\mathrm{R} \infty)(h v)]^{1 / 2}$ versus $\left.h v\right)$.

Figure S7. The effects of different scavengers (BQ: benzoquinone, AO: ammonium oxalate, TBA: tert-butyl alcohol) on MO under visible-light irradiation.

Figure S8. Band structures of compounds 1 (a) and 3 (b).

Figure S9. TG curves of compounds 1 (a), 2 (b) and 3 (c).

