Supporting Information

Control of Nuclearity in Heterometallic Cu^{II}–Mn^{II} Complexes Derived from Asymmetric Schiff Bases: Structures and Magnetic Properties

Prithwish Mahapatra^a, Sanjib Giri^b, Michael G. B. Drew^c, Ashutosh Ghosh^{*,a}

^aDepartment of Chemistry, University College of Science, University of Calcutta, 92, A. P.C. Road, Kolkata 700009, India, E-mail: ghosh_59@yahoo.com

^bDepartment of Chemistry, Sri Ramkrishna Sarada Vidyamahapitha, Kamarpukur, West Bengal 712612, India.

^cSchool of Chemistry, The University of Reading, P.O. Box 224, Whiteknights, Reading RG6 6AD, U.K.

Figure S1. Representative ESI mass spectrum of ligand H_2L^2 .

Figure S2. Representative ESI mass spectrum of ligand CuL².

Figure S3. Representative ESI mass spectrum of ligand H_2L^3 .

Figure S4. Representative ESI mass spectrum of ligand CuL³.

Figure S5. X-Ray powder diffractogram of complex 1.

Figure S6. X-Ray powder diffractogram of complex 2.

Figure S7. X-Ray powder diffractogram of complex 3.

Figure S8. X-Ray powder diffractogram of complex 3.

Figure S9. Representative IR spectrum of complex 1.

Figure S10. Representative IR spectrum of complex 2.

Figure S11. Representative IR spectrum of complex 3.

Figure S12. Representative IR spectrum of complex 4.

Figure S13. The weak π - π intermolecular interactions in complex 3 (left) and 4 (right).

Figure S14. Isothermal magnetizations at 2 K for compounds 1–4. Solid lines are their corresponding simulations with Brillouin function.

Figure S15. Variation of $\chi_M T$ as a function of temperature for complexes 2-4. The solid lines represent the best-fit results, in 10 K-300 K range for complex 2, in 30 K-300 K range for

complex **3** and in 20 K-300 K range for complex **4** without consideration of Weiss constant parameter as described in the text.

Figure S16. The calculated isodensity surfaces for lowspin (left) and highspin (right) ground state of complex **1** (upper panel) and complex **2** (lower panel) with surface cut off value 0.004 e/Å³. Positive and negative spin densities are represented by gray and purple surfaces respectively.

Figure S17. The calculated isodensity surfaces for lowspin (left) and highspin (right) ground of complex **3** (upper panel) and complex **4** (lower panel) with surface cut off value 0.004 e/Å^3 . Positive and negative densities are represented by gray and purple surfaces respectively.

Compound	1	2	3	4
Cu(1)-O(1)	1.921(3)	1.922(3)	1.926(4)	1.902(4)
Cu(1)-O(2)	1.933(3)	1.936(3)	1.913(5)	1.902(3)
Cu(1)-N(1)	1.993(4)	1.996(3)	1.949(6)	1.926(5)
Cu(1)-N(2)	1.925(4)	1.955(4)	1.954(7)	1.917(5)
O(1)-Cu(1)-N(2)	172.0(2)	169.7(2)	168.4(3)	168.1(2)
O(1)-Cu(1)-O(2)	80.9(1)	82.2(1)	77.8(2)	80.7(2)

Table S1. Molecular Dimensions (Å, deg.) in the Coordination Spheres of the metals in 1–4.

N(2)-Cu(1)-O(2)	92 7(2)	91.8(1)	90.8(3)	93 5(2)
$\Omega(1)$ - $\Omega(1)$ - $N(1)$	89 5(2)	90 4(1)	93 0(3)	93.1(2)
N(2)-Cu(1)-N(1)	97.9(2)	97 3(2)	98 4(3)	95.4(2)
O(2)-Cu(1)-N(1)	163.0(1)	165.4(1)	170.6(3)	161.6(2)
Mn(1)-O(1)	2.125(3)	2.166(3)	2.137(5)	2.199(3)
Mn(1)-O(2)	2.198(3)	2.420(3)	2.096(4)	2.116(4)
Mn(1)-Cl(1)	2.351(2)	2.454(2)	2.335(2)	2.330(2)
Mn(1)-Cl(2)	2.451(2)		2.330(2)	2.323(2)
Mn(1)-Cl(2)\$1	2.520(2)			
Mn(1)-O(3)			2.282(5)	2.417(4)
O(1)-Mn(1)-O(2)	70.6(2)	66.9(1)	69.4(2)	69.6(1)
O(1)-Mn(1)-Cl(1)	112.1(1)	102.0(1)	102.7(1)	102.2(1)
O(2)-Mn(1)-Cl(1)	100.0(1)	165.7(1)	120.8(1)	126.2(1)
O(1)-Mn(1)-Cl(2)	128.6(1)		105.2(1)	110.7(1)
O(2)-Mn(1)-Cl(2)	91.0(1)		120.2(1)	117.5(1)
Cl(1)-Mn(1)-Cl(2)	118.3(1)		118.5(1)	115.0(1)
O(1)-Mn(1)-Cl(2)\$1	91.4(1)			
O(2)-Mn(1)-Cl(2)\$1	153.1(1)			
Cl(1)-Mn(1)-Cl(2)\$1	105.4(1)			
Cl(2)-Mn(1)-Cl(2)\$1	84.8(1)			
O(1)-Mn(1)-O(1)\$2		137.6(2)		
O(2)-Mn(1)-O(1)\$2		79.6(1)		
O(2)-Mn(1)-O(2)\$2		75.1(2)		
Cl(1)-Mn(1)-O(1)\$2		105.8(2)		
Cl(1)-Mn(1)-O(2)\$2		94.6(1)		
Cl(1)-Mn(1)-Cl(1)\$2		97.1(1)		
O(1)-Mn(1)-O(3)			140.6(2)	137.4(2)
O(2)-Mn(1)-O(3)			71.7(2)	67.9(2)
Cl(1)-Mn(1)-O(3)			97.4(2)	100.1(1)
Cl(2)-Mn(1)-O(3)			94.1(2)	91.7(1)
Symmetry elements				

\$1=1-x, -y, 1-z	
2 = 1 - x. y, 3/2 - z	

 Table S2. List of fitted parameters in complexes 2–4 without consideration of Weiss constant.

Compounds	g_{av}	J	heta /K	R
2	2.04 (±0.05)	-39.37 (±0.07)	0	5.9×10 ⁻⁶
3	2.02 (±0.04)	-72.73 (±0.17)	0	2.0×10 ⁻⁶
4	2.05 (±0.05)	-49.27 (±0.14)	0	3.4×10 ⁻⁶

Table S3. Correlations of magnetic coupling with bridging angle for earlier reported diphenoxido-bridged Mn^{II}–Cu^{II} or Cu^{II}–Mn^{II}–Cu^{II} complexes.

Complexes	Cu–O–Mn angle	$J(\mathrm{cm}^{-1})$ ‡	CSD Code
$2(C_{20}H_{22}Cu_1N_2O_4), C_{20}H_{28}Cu_1Mn_1N_2O_7^{2+},$	103 75	-28.0	DEXOUT
$2(C_{11}O_4^{1-})$	103.75	20.0	DEAQUI
$C_{19}H_{20}Cu_{1}Mn_{1}N_{4}O_{10}$	107.44, 107.51	-71.6	GAJXUM
$C_{23}H_{26}Cu_1Mn_1N_2O_8, H_2O$	106.67, 107.78	-56.6	JAFLIM
$C_{26}H_{16}Cu_{1}F_{12}Mn_{1}N_{2}O_{6}$	99.57, 100.84	-22.4	LEGJAI
$C_{30}H_{43}Cu_1Mn_1N_5O_4{}^{2+},2(C_{11}O_4{}^{1-})$	101.13, 101.67	-36.8	QEKFIW
$C_{22}H_{30}Cu_1Mn_1N_2O_7^{2+},2(C_{22}H_{24}Cu_1N_2O_4),$	103 37 104 13	-30.4	VIIVRAI
$2(C_{11}O_4^{1-}), H_2O$	105.57, 104.15	50.4	
$C_{36}H_{30}Cu_2Mn_1N_4O_8,5(H_2O)$	103.28, 101.68	-28.5	BIXXEM
$C_{38}H_{40}Cu_2Mn_1N_{10}O_4\\$	91.84, 103.54	-20.0	FANJAH
$C_{40}H_{40}Cu_2Mn_1N_6O_6$	91.27, 103.25	-17.3	FANJEL
$C_{40}H_{40}Cu_2Mn_1N_6O_4S_2\\$	92.47, 103.35	-32.5	FANJIP
$C_{36}H_{32}N_6O_6Cu_2Mn_1\\$	98.62, 103.27	-26.5	QILDOG
$C_{36}H_{36}Cu_2Mn_1N_7O_5,ClO_4,O$	96.2, 102.9	-43.6	HAWPED
$C_{38}H_{36}Cu_2Mn_1N_6O_4S_2\\$	97.27, 103.80	-44.6	HAWPIH

	Complex 1		Complex 2		
Selected atoms	HS	BS	Selected atoms	HS	BS
Cu1	0.59015	-0.56211	Cul	0.59097	-0.56612
Mn1	4.81687	4.79916	Mn1	4.8303	4.80991
Mn1'	4.81684	-4.79913	Cu2	0.59098	-0.56613
Cu1′	0.59014	0.56211	Cl1 _(coordinating)	0.05792	0.05398
Cl1 _(coordinating)	0.07013	0.0698	Cl2 _(coordinating)	0.05791	0.05397
Cl2 _(bridging)	0.06527	0.00547	O1 _(bridging)	0.10428	-0.10343
Cl11'(bridging)	0.07014	-0.06981	O2 _(bridging)	0.09932	-0.10246
Cl2′(coordinating)	0.06527	-0.00547	N1 _(coordinating)	0.09471	-0.09012
O1 _(bridging)	0.09863	-0.08519	N2 _(coordinating)	0.10522	-0.09956
O2 _(bridging)	0.10133	-0.09846	O3 _(bridging)	0.10427	-0.10341
N1 _(coordinating)	0.10644	-0.10035	O4 _(bridging)	0.09932	-0.10247
N2 _(coordinating)	0.10775	-0.10066	N3 _(coordinating)	0.09474	-0.09014
O1'(bridging)	0.09862	0.08519	N4 _(coordinating)	0.10522	-0.09955
O2' (bridging)	0.10132	0.09843			
N1'(coordinating)	0.10644	0.10035			
N2'(coordinating)	0.10777	0.10067			

Table S4. Mulliken spin densities (in au) for high-spin (HS) and broken symmetry spin (BS) states of complexes 1–2.

Table S5. Mulliken spin densities (in au) for high-spin (HS) and broken symmetry spin (BS) states of structures **3**–**4**.

	Comp	olex 3	Com	plex 4
Selected atoms	HS	BS	HS	BS
Mn1	4.79938	4.78044	4.80816	4.79874
Cu1	0.60645	-0.5706	0.59161	-0.567
O1 (µ-1,1-phenoxido)	0.099	-0.09315	0.10815	-0.10307
O2 (µ-1,1-phenoxido)	0.09013	-0.07619	0.08651	-0.07845
O3 (µ-1,1-methoxido)	-3.7×10 ⁻⁵	-7.27×10 ⁻⁴	-1.89×10 ⁻⁴	-0.00108
N1 _(coordinating)	0.11124	-0.10186	0.12072	-0.11565
N2 _(coordinating)	0.11494	-0.10099	0.10465	-0.09425

Cl1 _(coordinating)	0.06612	0.06605	0.06684	0.06636
Cl2 _(coordinating)	0.06725	0.06747	0.06824	0.06815
C17(adjacent to-methoxido)	0.01492	-4.66×10-4	0.01375	-7.64×10-4
C18 (adjacent to-phenoxido O2)	-0.00234	3.4×10-5	6.1×10-4	0.0029