Supporting Information

NIR/Blue light emission optimization of NaY₁₋ _(x+y)Yb_xF₄:Tm_y upconversion nanoparticles via Yb³⁺/Tm³⁺ dopant balancing

Ali Bagheri^{a,b*}, Zheye Li^a, Cyrille Boyer^b and May Lim^a

^aSchool of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, Australia ^bCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, Australia

KEYWORDS: upconversion nanoparticle, lanthanide, optimization, dopant balancing

Corresponding Author

*E-mails: a.bagheri@unsw.edu.au

Experimental Section

Materials

Rare-earth chlorides ($LnCl_3 \cdot 6H_2O$, where Ln = Y, Yb, Tm; 99.9% trace metals basis), oleic acid (OA), 1octadecene, sodium hydroxide (NaOH) and ammonium fluoride (NH₄F), were all purchased from Sigma-Aldrich and used as received.

Sample	Designed Compositions (mole fraction)			Measured Compositions (mole fraction)			
	Y ³⁺	Yb ³⁺	Tm ³⁺	Y ³⁺	Yb ³⁺	Tm ³⁺	
UC1	0.1317	0.8511	0.0172	0.1642	0.8193	0.0165	
UC2	0.1451	0.8511	0.0038	0.1450	0.8503	0.0047	
UC3	0.7539	0.2289	0.0172	0.7320	0.2509	0.0171	
UC4	0.7673	0.2289	0.0038	0.7449	0.2516	0.0036	
UC5	0.4590	0.5400	0.0010	0.3823	0.6167	0.0010	
UC6	0.4400	0.5400	0.0200	0.4160	0.5664	0.0177	
UC7	0.0095	0.9800	0.0105	0.0078	0.9827	0.0096	
UC8	0.8895	0.1000	0.0105	0.8623	0.1269	0.0108	
UC9	0.4495	0.5400	0.0105	0.3360	0.6553	0.0089	
UC10	0.4495	0.5400	0.0105	0.4436	0.5467	0.0096	
UC11	0.4495	0.5400	0.0105	0.4450	0.5452	0.0098	
UC12	0.4495	0.5400	0.0105	0.4480	0.5426	0.0095	

 $\label{eq:s1:Elemental composition of NaY_{1-(x+y)} Yb_xF_4: Tm_y \ doped \ with \ Yb \ and \ Tm \ obtained \ from \ ICP-MS \ analysis$

Figure S1. (i) TEM image, (ii-vii) EDX elemental mapping images of $NaY_{1-(x+y)}Yb_xF_4$:Tm_y UCNPs where the mole fractions of the Yb³⁺ sensitizer and Tm³⁺ activator are x=0.98 and y=0.0105, respectively (sample UC7). Scale bar shows the length of 400 nm.

Run/Samples	Compositions of dopant ions		Responses/observed values (CPS)				
	(mole fract	ion)					
	Yb ³⁺	Tm ³⁺	UCL 475 nm ^a	UCL 800nm b	Total UC emission ^c		
UC1	0.8511	0.0172	2.051129×10 ⁵	5.56029040×10 ⁸	5.62293195×10 ⁸		
UC2	0.8511	0.0038	4.024866×104	4.051487675×107	4.0914163×10 ⁷		
UC3	0.2289	0.0172	2.622874×10^{4}	1.314106459×10 ⁸	1.41754875×10 ⁸		
UC4	0.2289	0.0038	8.804392×10 ⁴	1.240787462×10 ⁸	1.35621972×10 ⁸		
UC5	0.5400	0.0010	1.519943×10 ⁴	1.601579923×107	1.8129107×107		
UC6	0.5400	0.0200	1.338236×10 ⁴	8.364038445×10 ⁷	8.4703533×10 ⁷		
UC7	0.9800	0.0105	2.203131×10 ⁵	4.527912046×10 ⁸	4.57292948×10 ⁸		
UC8	0.1000	0.0105	8.784378×10^{4}	1.495043665×10 ⁸	1.55239543×10 ⁸		
UC9	0.5400	0.0105	1.528179×10^{4}	4.155060498×107	4.2355694×107		
UC10	0.5400	0.0105	1.252329×10 ⁴	2.54286443×107	2.5776982×107		
UC11	0.5400	0.0105	1.11975×10 ⁴	2.486714003×107	2.5119235×107		
UC12	0.5400	0.0105	1.029185×10 ⁴	2.452103414×107	2.4795265×107		

Table S2. Scheme of CCRD with the results of responses on independent factors

Integrated emissions were calculated using MATLAB R2017a software as follow: ^a Integrated counts of blue emission (three-photon UC 475 nm) UCL_{475 nm} were taken into account between 465 nm and 485 nm; ^b the integrated counts of (two-photon UC 800 nm) UCL_{800nm} were taken into account between 750 nm to 850 nm; ^c Total integration of all UCL peaks.

Table S3. values of the intercept coefficient (β_0), linear coefficients (β_i), squared coefficients (β_{ii}), and *interaction coefficients* (β_{ij}) when a second-order polynomial (equ.1) was used to correlate the integrated emission intensities at 800 nm (UCL_{800nm}) and 475 nm (UCL_{475 nm}) to the Yb³⁺ sensitizers (x) and Tm³⁺ activators (y) concentrations.

Emission	β_0	β_x	β_y	β_{xx}	β_{yy}	β_{xy}
UCL _{475 nm}	3.01069×10 ⁵	-9.63518222×10 ³	-1.38960×10 ⁵	7.469878×10 ¹	5.35101177×10 ³	2.71147593×10 ³
UCL _{800nm}	5.72143×10 ⁸	-1.95124×107	-3.05067×10 ⁸	1.50215×10 ⁵	4.37634×107	6.07874×10^{6}

Consequently, two second-order polynomial equations represent $UCL_{475 nm}$ and UCL_{800nm} respectively as a function of the parameters of formulations:

 $UCL_{800nm} = (5.72143 \times 10^8) - ((1.95124 \times 10^7) \times Yb) - ((3.05067 \times 10^8) \times Tm) + ((1.50215 \times 10^5) \times Yb^2) + ((4.37634 \times 10^7) \times Tm^2) + ((6.07874 \times 10^6) \times Yb \times Tm)$ (8.2)

Table S4.	The	ANOVA	table for	CCRD	of UC 800 nm
-----------	-----	-------	-----------	------	--------------

Source	UCL $_{800 \text{ nm}}$ (R ² =0.9232)				
	Sum of Squares	Mean Squares	F-value	P-value	
Model	3.224607874×10 ¹⁷	6.448×10^{16}	14.43	0.0027	significant
A-Yb	7.411×10 ¹⁶	7.411×10^{16}	16.59	0.0066	
B-Tm	4.781×10 ¹⁶	4.781×10^{16}	10.70	0.0170	
AB	6.456×10 ¹⁶	6.456×10 ¹⁶	14.45	0.0089	
A^2	1.353×10 ¹⁷	1.353×10 ¹⁷	30.29	0.0015	
B ²	2.496×10 ¹⁵	2.496×10 ¹⁵	0.56	0.4830	

Source	UCL $_{475 \text{ nm}}$ (R ² =0.9704)				
	Sum of Squares	Mean Squares	F-value	P-value	
Model	6.121×10 ¹⁰	1.224×10 ¹⁰	39.29	0.0002	significant
A-Yb	1.267×10 ¹⁰	1.267×10^{10}	40.67	0.0007	
B-Tm	1.262×10 ⁹	1.262×10 ⁹	4.05	0.0908	
AB	1.285×10^{10}	1.285×10 ¹⁰	41.22	0.0007	
A ²	3.346×10 ¹⁰	3.346×10 ¹⁰	107.39	< 0.0001	
B ²	3.732×10 ⁷	3.732×10 ⁷	0.12	0.7411	

Table S5. The ANOVA table for CCRD of UC 475 nm.

Figure S2. Predicted versus actual UCL emissions at (a) 475 nm and (b) 800 nm based on the chosen quadratic model.