Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

F. Failamani et al. "Boron-phil and boron-phob structure units in novel Borides .."

Supplementary Material

1

to

Boron-phil and boron-phob structure units in novel Borides Ni₃Zn₂B and Ni₂ZnB: Experiment and First Principles Calculations

F. Failamani^{1,*}, R. Podloucky², J. Bursik³, G. Rogl^{1,4,5}, H. Michor⁴, H. Müller⁴, E. Bauer^{4,5}, G. Giester⁶, P. Rogl^{1,5}

Tables:

Table I: Phase compositions of samples prepared for the single crystal growth (number refers to the Fig. 1)

No.	Phase	Ni:Zn	Approximate composition from EDX		
			Ni	Zn	В
1a	τ ₄	76.0:24.0	50.5	15.9	33.6
	τ ₅	-	-	-	-
	τ_6	68.6:31.4	50.6	23.4	26.0
	Ni ₂ Zn ₁₁	27.6:72.4	27.6	72.4	-
1b	τ ₅	62.5:37.5	52.3	31.3	16.4
	Ni ₂ Zn ₁₁	30.0:70.0	30.0	70.0	-
	rT-NiZn	46.8:53.2	46.8	53.2	-
	eutectic	39.2:60.8	36.1	55.9	8.0
1c	τ_4	75.3:24.7	51.7	15.2	33.1
	τ_5	60.6:39.4	50.4	32.8	16.7
	τ_6	67.9:32.1	51.1	24.2	24.7
	Ni ₂ Zn ₁₁	28.1:71.9	28.1	71.9	-
	eutrectic	39.9:60.1	36.4	54.7	8.9
1d	τ ₅	63.3:36.7	53.1	30.8	16.2
	rT-NiZn	47.7:52.3	47.7	52.3	-
	Ni ₂ Zn ₁₁	-	-	-	-

1e	τ ₅	61.5:38.5	53.0	33.1	13.8
	τ_6	68.6:31.4	53.0	21.9	25.2
	Ni ₂ Zn ₁₁	-	-	-	-
	eutectic	38.1:61.9	35.0	56.7	8.3
1f	τ_4	75.3:24.7	50.4	16.5	33.1
	τ_5	62.2:37.8	54.0	29.5	16.5
	τ_6	68.4:31.6	51.3	23.6	25.1
	Ni ₂ Zn ₁₁	-	-	-	-

Table II: Interatomic bonding distances in τ_5 .

Atom 1	Atom 2	d _{1,2} [nm]	Atom 1	Atom 2	d _{1,2} [nm]
Ni1	B (2×)	0.20632(1)	Zn1	Ni3 (1×)	0.25225(1)
CN=13	Ni1 (1×)	0.25194(1)	CN=12	Ni3 (2×)	0.25597(1)
	Zn2 (2×)	0.25379(1)		Ni2 (2×)	0.25699(1)
	Ni3 (1×)	0.25604(1)		Ni1 (2×)	0.25755(1)
	Zn1 (2×)	0.25755(1)		Zn2 (1×)	0.25996(1)
	Zn2 (2×)	0.26094(1)		Zn1 (2×)	0.26332(1)
	Ni1 (2×)	0.26332(1)		Zn1 (2×)	0.26976(1)
	Ni2 (1×)	0.26440(1)	Zn2	Ni1 (2×)	0.25379(1)
Ni2	B (2×)	0.20606(1)	CN=12	Zn1 (1×)	0.25996(1)
CN=13	Zn1 (2×)	0.25699(1)		Zn2 (1×)	0.26047(1)
	Zn2 (2×)	0.26072(1)		Ni2 (2×)	0.26072(1)
	Ni3 (2×)	0.26096(1)		Ni1 (2×)	0.26094(1)
	Ni2 (2×)	0.26332(1)		Zn2 (2×)	0.26332(1)
	Ni1 (1×)	0.26440(1)		Ni2 (2×)	0.26622(1)
	Zn2 (2×)	0.26622(1)	В	Ni3 (2×)	0.20545(1)
Ni3	B (2×)	0.20545(1)	CN=7	Ni2 (2×)	0.20606(1)
CN=13	B (1×)	0.21615(1)		Ni1 (2×)	0.20632(1)
	Ni3 (2×)	0.24984(1)		Ni3 (1×)	0.21615(1)
	Zn1 (1×)	0.25225(1)			
	Zn1 (2×)	0.25597(1)			
	Ni1 (1×)	0.25604(1)			
	Ni2 (2×)	0.26096(1)			
	Ni3 (2×)	0.26332(1)			

Cage	Center	Ligand	Distances (nm)
1	(1/2, 1/2, 1/2)	Zn2 (4×)	0.18519(1)
		Ni2 (2×)	0.18743(1)
2	(~0.4,1/2,~0.15)	Zn1 (2×)	0.18501(1)
		Zn2 (2×)	0.18501(1)
		Ni1 (1×)	0.18321(1)
		Ni2 (1×)	0.18321(1)
3	(0,1/2,0)	Ni1 (4×)	0.18222(1)
		Zn2 (2×)	0.18179(1)
4	(1/4,1/4,0)	Zn1 (2×)	0.22992(1)
		Zn1 (2×)	0.13488(1)
		Ni3 (2×)	0.21537(2)

Table III: Distances between the center of the Ni_2Zn_4 octahedra and the nearest Ni/Zn atoms in τ_5 - Ni_3Zn_2B .

Table IV: Interatomic distances in τ_6 -Ni₂ZnB

Atom 1	Atom 2	d _{1,2} [nm]	Atom 1	Atom 2	d _{1,2} [nm]
Ni1	B (2×)	0.20135(1)	Zn	Ni1 (2×)	0.25262(1)
CN=14	B (1×)	0.21812(1)	CN=12	Ni1 (1×)	0.25275(2)
	Ni1 (2×)	0.24688(1)		$Zn(1\times)$	0.25459(2)
	$Zn(2\times)$	0.25262(1)		Ni2 (2×)	0.26361(1)
	$Zn(1\times)$	0.25275(2)		Ni2 (2×)	0.26435(1)
	Ni2 (1×)	0.25936(2)		Zn (2×)	0.26899(2)
	Ni2 (2×)	0.26096(1)		$Zn(2\times)$	0.28371(2)
	Ni2 (1×)	0.27474(2)	В	B (1×)	0.18495(1)
	Ni1 (2×)	0.28371(2)	CN=8	Ni1 (2×)	0.20135(1)
Ni2	B (2×)	0.21085(1)		Ni2 (2×)	0.21085(1)
CN=15	B (2×)	0.21309(1)		Ni2 (2×)	0.21309(1)
	Ni2 (1×)	0.25502(2)		Ni1 (1×)	0.21812(1)
	Nil (1×)	0.25936(2)			
	Ni1 (2×)	0.26096(1)			
	$Zn(2\times)$	0.26361(1)			
	$Zn(2\times)$	0.26435(1)			
	Ni1 (1×)	0.27474(2)			
	Ni2 (2×)	0.28371(2)			

Cago	Contor	Ligand	Distanc	ees (nm)
Cage	Center	Ligand	τ_4 -Ni ₃ ZnB ₂	τ_6 -Ni ₂ ZnB
1	$(0, \frac{1}{2}, \frac{1}{2})$	Zn1 (4×)	0.19396(5)	0.19060(2)
		Ni2 (2×)	0.17688(7)	0.18265(2)
2	(1/4, 1/4, 1/2)	Zn1 (2×)	0.24420(6)	0.24153(3)
		Zn1 (2×)	0.13346(6)	0.13450(2)
		Ni1 (2×)	0.21851(7)	0.21392(3)

Table V: Distances between the center of the octahedral cage Ni₂Zn₄ and Ni/Zn atoms in τ_4 -Ni₃ZnB₂ (recalculated from ref. [7]) and τ_6 -Ni₂ZnB.

Table VI: Bader charge analysis of DFT results for τ_3 -Ni₂₁Zn₂B₂₀. Atomic position (pos.), Bader volume V_b in Å³, corresponding radius R_b in Å, volume difference ΔV_b in Å³ and ionic charge Δq_{ion} in units of the proton charge defined as difference of the Bader charge of the selfconsistent calculations minus the charge of the superposed electron densities of the free atoms.

pos.	Vb	Rb	ÄVb	Äqion
Ni1	9.89	2.11	-0.32	0.32
Ni2	9.46	2.08	-0.33	0.38
Ni3	10.52	2.16	-0.24	0.28
Ni4	10.05	2.12	0.03	0.09
Ni5	10.10	2.13	0.07	0.09
Ni6	9.62	2.09	-0.16	0.33
Zn	12.01	2.25	-0.80	0.38
B1	7.05	1.89	0.23	-0.28
B2	6.57	1.84	0.42	-0.41
B3	6.80	1.87	0.34	-0.34

Table VII: Bader charge analysis of DFT results for τ_4 -Ni₃ZnB₂. Atomic position (pos.), Bader volume V_b in Å³, corresponding radius R_b in Å, volume difference ΔV_b in Å³ and ionic charge Δq_{ion} in units of the proton charge defined as difference of the Bader charge of the selfconsistent calculations minus the charge of the superposed electron densities of the free atoms.

pos.	Vb	Rb	ÄVb	Äqion
Ni1	10.82	2.18	0.22	0.02
Ni2	10.79	2.18	0.09	0.11
Ni3	9.05	2.05	-0.38	0.34
Zn	12.15	2.26	-0.70	0.26
B1	7.11	1.89	0.42	-0.39
B2	6.77	1.86	0.34	-0.34

Table VIII: Bader charge analysis of DFT results for τ_5 - Ni₃Zn₂B. Atomic position (pos.), Bader volume V_b in Å³, corresponding radius R_b in Å, volume difference ΔV_b in Å³ and ionic charge Δq_{ion} in units of the proton charge defined as difference of the Bader charge of the selfconsistent calculations minus the charge of the superposed electron densities of the free atoms.

pos.	Vb	Rb	ÄVb	Äqion
Ni1	11.36	2.21	0.45	-0.10
Ni2	11.51	2.22	0.39	-0.06
Ni3	10.56	2.16	0.13	0.05
Zn1	11.86	2.25	-0.64	0.24
Zn2	11.99	2.25	-0.66	0.24
В	7.32	1.91	0.33	-0.38

Table IX: Bader charge analysis of DFT results for τ_6 -Ni₂ZnB. Atomic position (pos.), Bader volume V_b in Å³, corresponding radius R_b in Å, volume difference ΔV_b in Å³ and ionic charge Δq_{ion} in units of the proton charge defined as difference of the Bader charge of the selfconsistent calculations minus the charge of the superposed electron densities of the free atoms.

pos.	Vb	Rb	ÄVb	Äqion
Ni1	10.78	2.18	0.09	0.10
Ni2	10.76	2.17	0.22	0.02
Zn	12.21	2.27	-0.70	0.26
В	6.99	1.88	0.38	-0.38

Table X. Comparison of experimental single crystal and DFT calculated lattice and atom parameters for τ_3 to τ_6 (all structures standardized with program *Structure Tidy* [23]).

Parameter/compound	τ_3 -Ni ₂₁ Zn ₂ B ₂₀ - SC data	DFT data
<i>a</i> [nm]; <i>c</i> [nm]	0.72103(1); 1.42842(5)	0.718896; 1.426445
16 Ni1 in 16 <i>n</i> (0, <i>y</i> , <i>z</i>)	y=0.30020(5), z=0.10062(3)	y=0.299922, z=0.100786
8 Ni2 in 8 <i>j</i> (x , $\frac{1}{2}$, 0)	x=0.24032(8)	x=0.239928
8 Ni3 in $8f(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$		
4 Ni4 in 4 d (0, ¹ / ₂ , ¹ / ₄)		
2 Ni5 in 2 <i>a</i> (0, 0, 0)		
4 Ni6 in 4 <i>e</i> (0,0, <i>z</i>)	z=0.36216(5)	z=0.361496
4 Zn in $4e(0, 0, z)$	z=0.19029(5)	<i>z</i> =0.189985
16 B1 in 16 <i>n</i> (0, <i>y</i> , <i>z</i>)	y=0.2984(4); z=0.3453(2)	<i>y</i> =0.299797; <i>z</i> =0.345918
16 B2 in 16 <i>m</i> (<i>x</i> , <i>x</i> , <i>z</i>)	x=0.2929(3), z=0.1059(2)	x=0.293361, z=0.105781
16 B3 in 16 <i>l</i> (<i>x</i> , <i>x</i> , 0)	x=0.2025(4)	x=202205
Demonstan/across and	- N: 7- Daingle envetel date	DET data
(CC) [mm]	t ₅ -INI ₃ Zn ₂ B single crystal data	
	0.95101(4)	0.950651
b (SC) [nm]; β (SC) [°]	0.2892(4); 101.097(3)	0.288048; 101.402
<i>c</i> (SC) [nm]	0.84366(3)	0.844890
4 Ni1 in $4i(x, 0, z)$	<i>x</i> =0.21879(5), <i>z</i> =0.25127(6)	<i>x</i> =0.218009, <i>z</i> =0.251072
4 Ni2 in $4i(x, 0, z)$	<i>x</i> =0.49680(5), <i>z</i> =0.28968(6)	<i>x</i> =0.494699, <i>z</i> =0.288199
4 Ni3 in 4 <i>i</i> (<i>x</i> , 0, <i>z</i>).	<i>x</i> =0.63894(5), <i>z</i> =0.00305(6)	<i>x</i> =0.638427, <i>z</i> =0.002498
4 Zn in $4i(x, 0, z)$	<i>x</i> =0.13845(5), <i>z</i> =0.52534(5)	<i>x</i> =0.138285, <i>z</i> =0.524851
4 B1 in $4i(x, 0, z)$	<i>x</i> =0.1550(5), <i>z</i> =0.8151(5)	<i>x</i> =0.156015, <i>z</i> =0.815686
4 B2 in 4 <i>i</i> (<i>x</i> , 0, <i>z</i>)	<i>x</i> =0.0145(5), <i>z</i> =0.1119(5)	<i>x</i> =0.014606, <i>z</i> =0.111747

^{*a*}crystal structure data are standardized using the program Structure Tidy²⁰. ^{*b*}nominal composition of the alloy from which a single crystal was isolated. ^{*c*}anisotropic atomic displacement parameters U_{ii} in [10² nm²].

Parameter/compound	τ ₅ -Ni ₃ Zn ₂ B single crystal data	DFT data
a(SC) / a(XPD-Si standard) (nm)	1.68942(8) / 1.6934(2)	1.696467
b(SC) / b(XPD-Si standard) (nm)	0.26332(1) / 0.26448(1)	0.263834
c(SC) / c(XPD-Si standard) (nm)	0.61904(3) / 0.62152(3)	0.619690
β (SC) / β (XPD-Si standard) (°)	111.164(2) / 111.170(4)	111.344
4 Ni1 in 4i (x,0,z); occ.	x= 0.07909(2); z = 0.10781(5)	x= 0.079453; z = 0.110651
4 Ni2 in 4i (x,0,z); occ.	x= 0.11705(2); z = 0.56127(5)	x= 0.116902; z = 0.559792
4 Ni3 in 4i (x,0,z); occ.	x= 0.24022(2); z = 0.32068(5)	x=0.239784; z = 0.320496
4 Zn1 in 4i (x,0,z); occ.	x= 0.32445(2); z = 0.05714(5)	x= 0.324597; z = 0.058113
4 Zn2 in 4i (x,0,z); occ.	x=0.48766(2); z=0.27981(5)	x= 0.487293; z = 0.279410
B in 4i (x,0,z); occ.	x=0.3476(2); z=0.6437(5)	x= 346310; z = 0.640957

Parameter/compound	τ_6 -Ni ₂ ZnB single crystal data	DFT data
a(SC) / a(XPD-Si standard) (nm)	0.95296(7) / 0.9549(6)	0.954008
b(SC) / b(XPD-Si standard) (nm)	0.28371(2) / 0.28466(3)	0.28435
c(SC) / c(XPD-Si standard) (nm)	0.59989(1) / 0.6006(3)	0.601324
β (SC) / β (XPD-Si standard) (°)	93.009(4) / 93.01(5)	92.996
4 Ni1 in 4i (x,0,z)	x = 0.45925(3); z = 0.19908(4)	x= 0.460496; z = 0.196963
4 Ni2 in 4i (x,0,z)	x=0.72930(3); z=0.16342(4)	x= 0.728978; z = 0.163505

4 Zn in 4i (x,0,z)	x=0.13083(3); z=0.46672(4)	x= 0.130741; z = 0.467678
4 B in 4i (x,0,z)	x=0.0931(2); z=0.0515(4)	x= 0.094038; z = 0.049909

Figures:

Figure I: Rietveld refinement of sample $Ni_{40}Zn_{50}B_{10}$ which contains three phases τ_5 - Ni_3Zn_2B , Ni_2Zn_{11} , and the room temperature modification rT-NiZn.

Figure II: Compositional dependence unit cell volume (from Rietveld refinement) of τ_5 -Ni₃Zn₂B; the solid line represents the linear fit according to Vegard's law.

Figure III. Rietveld refinement of a three-phase alloy with nominal composition of $Ni_{42}Zn_{44}B_{14}$ (in at.%), containing τ_5 , τ_6 , and Ni_2Zn_{11} .

Figure IV. Electronic band structure of (a) τ_5 -Ni₃Zn₂B and (b) τ_6 -Ni₂ZnB along high symmetry directions. The coordinates of the symmetry points in reciprocal lattice units are Z(½,0,0), $\Gamma(0,0,0) X(0,2,0), A(2,2,0), D(2,0,2), Y(0,0,2)$.

F. Failamani et al. "Boron-phil and boron-phob structure units in novel Borides .."

Figure V: Differences of self consistent minus superposed free atom charge density for τ_5 -Ni₃Zn₂B as in Fig. 25 but with rotated axis. Colouring of atoms: Ni gold, Zn blue, B red. Graphic produced by VESTA.⁴⁶

Figure VI. Vickers hardness of various $Ni_x Zn_y B_z$ borides from microhardness measurements (as a function of load) and from nano-indentation. Insert: H_V impressions in a grain of τ_5 . Data for NiB, τ_3 , and τ_4 are from ref.⁹.