Table S1. Selective bond lengths and angles of 1 .						
Mn(1)-O(6)#1	2.168(3)	Mn(2)-O(49)	2.043(4)			
Mn(1)-O(6)	2.168(3)	Mn(2)-O(33)	2.096(4)			
Mn(1)-O(1)	2.202(4)	Mn(2)-O(48)	2.171(4)			
Mn(1)-O(1)#1	2.202(4)	Mn(2)-O(57)	2.230(4)			
Mn(1)-O(2)	2.209(3)	Mn(2)-O(23)	2.230(4)			
Mn(1)-O(2)#1	2.209(3)	O(6)#1-Mn(1)-O(6)	180.0			
Mn(3)-O(9)#2	2.163(3)	O(6)#1-Mn(1)-O(1)	84.53(13)			
Mn(3)-O(9)	2.163(3)	O(6)-Mn(1)-O(1)	95.47(13)			
Mn(3)-O(12)#2	2.222(3)	O(6)#1-Mn(1)-O(1)#1	95.47(13)			
Mn(2)-O(8)	2.304(4)	O(6)-Mn(1)-O(1)#1	84.53(13)			
Pb(1)-O(4)	2.361(4)	O(1)-Mn(1)-O(1)#1	180.00(15)			
Pb(1)-O(8)	2.363(3)	O(49)-Mn(2)-O(48)	95.98(18)			
Pb(1)-O(23)	2.507(4)	O(33)-Mn(2)-O(48)	99.45(17)			
Pb(1)-O(51)	2.662(5)	O(49)-Mn(2)-O(57)	92.28(18)			
O(4)-Pb(1)-O(8)	79.12(13)	O(33)-Mn(2)-O(57)	98.03(17)			
O(4)-Pb(1)-O(23)	87.46(13)	O(48)-Mn(2)-O(57)	160.54(17)			
O(8)-Pb(1)-O(23)	72.78(12)	O(49)-Mn(2)-O(23)	174.30(16)			
O(4)-Pb(1)-O(51)	160.79(15)	O(33)-Mn(2)-O(23)	94.46(15)			
O(8)-Pb(1)-O(51)	82.52(14)	O(48)-Mn(2)-O(23)	85.53(15)			
O(23)-Pb(1)-O(51)	81.73(13)	O(57)-Mn(2)-O(23)	84.65(15)			
O(6)#1-Mn(1)-O(2)	84.14(13)	O(49)-Mn(2)-O(8)	95.65(15)			
O(6)-Mn(1)-O(2)	95.86(13)	O(9)#2-Mn(3)-O(7)	81.84(13)			
O(1)-Mn(1)-O(2)	98.26(12)	O(9)-Mn(3)-O(7)	98.16(13)			
O(1)#1-Mn(1)-O(2)	81.74(12)	O(12)#2-Mn(3)-O(7)	84.02(13)			
O(6)#1-Mn(1)-O(2)#1	95.86(13)	O(12)-Mn(3)-O(7)	95.98(13)			
O(6)-Mn(1)-O(2)#1	84.14(13)	O(9)#2-Mn(3)-O(7)#2	98.16(13)			
O(1)-Mn(1)-O(2)#1	81.74(12)	O(9)-Mn(3)-O(7)#2	81.84(13)			
O(1)#1-Mn(1)-O(2)#1	98.26(12)	O(12)#2-Mn(3)-O(7)#2	95.98(13)			
O(2)-Mn(1)-O(2)#1	180.00(17)	O(12)-Mn(3)-O(7)#2	84.02(13)			
O(49)-Mn(2)-O(33)	90.71(16)	O(7)-Mn(3)-O(7)#2	180.00(5)			
O(33)-Mn(2)-O(8)	173.48(14)	O(9)#2-Mn(3)-O(12)	85.80(13)			
O(48)-Mn(2)-O(8)	78.51(15)	O(9)-Mn(3)-O(12)	94.20(13)			
O(57)-Mn(2)-O(8)	83.18(15)	O(9)#2-Mn(3)-O(12)#2	94.21(13)			
O(23)-Mn(2)-O(8)	79.24(13)	O(9)-Mn(3)-O(12)#2	85 80(13)			

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x,-y,-z #3 -x,-y+2,-z+1

CPE	Peaks	IV	Ι	II	III	V	Conversion% of
							Fe(III)
1	$E_{\rm pa}$	-0.1369	-0.0112	0.2662	0.4068	0.1210	66.9%, 90 min;
	$E_{\rm pc}$		-0.0391	0.2244	0.3631		74.7%, 150 min
	$1/2E_{\rm p}$		-0.0252	0.2453	0.3850		50 °C
	$\varDelta E_{\rm p}$		0.0279	0.0418	0.0437		This work
2	$E_{\rm pa}$	-0.1430	-0.0260	0.3037	0.4348	0.1300	36.8%, 90 min;
	$E_{\rm pc}$		-0.0120	0.2285	0.3723		60.6%, 150 min
	<i>1/2E</i> _p		-0.0190	0.2661	0.4036		50 °C
	$\varDelta E_{\rm p}$		0.0140	0.0752	0.0625		This work
3	$E_{\rm pa}$	-0.1322	-0.0213	0.3037	0.4318	0.1370	52.5%, 90 min;
	$E_{\rm pc}$		-0.0182	0.2224	0.3662		66.9%, 150 min
	$1/2E_{\rm p}$		-0.0198	0.2631	0.3990		50 °C
	$\varDelta E_{\rm p}$		0.0031	0.0813	0.0656		This work
4	$E_{\rm pa}$	-0.1431	-0.0215	0.2861	0.4224	0.1310	44.9%, 90 min;
	$E_{\rm pc}$		-0.0203	0.2308	0.3752		69.8%, 150 min
	$1/2E_{\rm p}$		-0.0209	0.2585	0.3988		50 °C
	$\varDelta E_{\rm p}$		0.0012	0.0553	0.0472		This work
5	$E_{\rm pa}$	-0.1799	-0.0511	0.2037	0.3637		53.6%, 90 min;
	$E_{\rm pc}$		-0.0712	0.1890	0.3274		71.2%, 150 min
	$l/2E_{\rm p}$		-0.0612	0.1964	0.3456		50 °C
	$\varDelta E_{\rm p}$		0.0201	0.0147	0.0363		Ref. 21
6	$E_{\rm pa}$	-0.2095	-0.0714	0.1837	0.3258		45.3%, 90 min;
	$E_{\rm pc}$		-0.1171	0.1548	0.2775		63.1% 150 min
	$1/2E_{\rm p}$		-0.0943	0.1693	0.3017		55 °C
	$\varDelta E_{\rm p}$		0.0457	0.0289	0.0483		Ref. 22
7	$E_{\rm pa}$	-0.1870	-0.0327	0.2159	0.3594		63.0%, 150 min
	$E_{\rm pc}$		-0.0910	0.1819	0.3112		50 °C
	$1/2E_{\rm p}$		-0.0619	0.1989	0.3353		Our data
	$\varDelta E_{\rm p}$		0.0583	0.0340	0.0482		
8	$E_{\rm pa}$	-0.1987	-0.0700	0.1795	0.3261		48.4%, 90 min;
	$E_{\rm pc}$		-0.1166	0.1524	0.2798		77.3%, 150 min
	$1/2E_{\rm p}$		-0.0933	0.1660	0.3030		55 °C
	$\varDelta E_{\rm p}$		0.0466	0.0271	0.0463		Ref. 22

Table S2. Redox potentials of crystal-CPEs in the 1.0 M H_2SO_4 solutions. Scan rate 140 mV·s⁻¹, Potentials (V) vs. SCE.

 $5 Mn_{2} - \{Mn(P_{4}Mo_{6})_{2}\}^{[21]}: Na(H_{2}O)_{2}(Hbpp)_{3}[Na_{2}(bpp)][Mn_{2}(H_{2}O)_{5}] \{Mn[Mo_{12}O_{24}(OH)_{6}(HPO_{4})_{6}(H_{2}PO_{4})] \} \cdot (HPO_{4}) \cdot 2H_{2}O;$ $6 \{Ni(P_{4}Mo_{6})_{2}\}^{[22]}: (H_{2}bpp)_{6}\{Ni[Mo_{6}O_{13}(OH)_{2}(HPO_{4})_{3}(H_{2}PO_{4})]_{2}\}_{2} \cdot 13H_{2}O;$

 $7 Co_2 - \{Co(P_4Mo_6)_2\}^{[8]}: (H_2 bpp)_6 [Co(H_2O)_2]_4 \{Co[Mo_6O_{12}(OH)_3(HPO_4)_2(H_2PO_4)(PO_4)]_2\}_2 \cdot 2(HPO_4) \cdot 12H_2O;$

8 Cd₂-{Cd(P₄Mo₆)₂}^[22]: (H₂bpp)₂[Cd(H₂O)Cd(H₂O)₂]₂{Cd[Mo₆O₁₂(OH)₃(HPO₄)₂(PO₄)₂]₂}·8H₂O

References see the text.

Fig. S1. The EDS of compounds 2-4.

Fig. S3. IR spectra of compounds 1-4.

Fig. S4. TG and DSC curves of compounds 1-4

Fig. S6. UV absorption spectra of three-times cycle experiments with catalyst 1.

Fig. S7. IR spectra of 1: after degradation (black line); before degradation (red line).

Fig. S8. The reduction rates of Fe (III) catalyzed by compounds 1-4 at 270 min, 50°C.

Fig. S9. (a) UV spectra of catalytic reduction of Cr(VI) by the reported compound^[7] at 55 °C; (b) UV spectra of catalytic reduction of Cr(VI) by compound 1 at 25 °C; (c) UV spectra of catalytic reduction of Cr(IV) by compound 1 at 55 °C. The other reaction conditions are same for these experiments. Ref. [7] sees the text.

Fig. S10. (a-c) UV spectra of catalytic reduction of Cr (VI) by compounds **2-4** at 25 °C; (d-f) UV spectra of catalytic reduction of Cr (VI) by compounds **2-4** at 55 °C.

Fig. S11. Cyclic voltammograms of (a) 1-CPE, (b) 2-CPE, (c) 3-CPE, and (d) 4-CPE in the 1.0 M H_2SO_4 solution at different scan rates (from inner to outer: 20, 50, 80, 110, 140, 170, and 200 mV·s⁻¹). Potentials vs. SCE.