Electronic Supplementary Information (ESI)

A Three Dimensional (Time, Wavelength and Intensity) Functioning Fluorescent Probe for the Selective Recognition/Discrimination of Cu²⁺, Hg²⁺, Fe³⁺ and F⁻ ions

Qin Ruan,^a Lan Mu,^a Xi Zeng,^{*a} Jiang-Lin Zhao,^{*b} Li Zeng,^a Zhen-Min Chen,^b Cai Yang,^b Gang Wei^{*c} and Carl Redshaw^d

^a Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; School of Chemistry and Chemical engineering, Guizhou University, Guiyang 550025, China. E-mail: zengxi1962@163.com

^b Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China. E-mail: zhaojianglin1314@163.com

^c CSIRO Manufacturing, PO Box 218, NSW 2070, Australia. E-mail: gang.wei@csiro.au

^d Chemistry, School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, U.K.

1. Materials and Methods

Unless otherwise stated, all reagents used were purchased from commercial sources and were used without further purification. The solutions of the metal ions were prepared from their perchlorate salts (Aldrich and Alfa Aesar Chemical Co., Ltd.). All the anions used were tetra-*n*-butylammonium salts (Sigma-Aldrich Chemical Co., Ltd.), and were stored in a desiccator under vacuum containing self-indicating silica. Double distilled water was used throughout. Fluorescence spectral measurements were performed on a Cary Eclipse fluorescence spectrophotometer (Agilent Technologies) equipped with a xenon discharge lamp using a 1 cm quartz cell. UV-Vis absorption spectra were conducted on a UV-1800 spectrophotometer (Shimadzu) in a 1 cm quartz cell. IR spectra were obtained using a Vertex 70 FT-IR spectrometer (Bruker). ¹H and ¹³C NMR spectra were measured on JEOL JNM-ECZ400S 400 MHz NMR spectrometer (JEOL) and WNMR-I 500 MHz NMR spectrometer respectively at room temperature using TMS as an internal standard. MALDI-TOF mass spectra were measured on a AB SCIEX TripleTOFAM 5600 System. Microelectrode layers using the sputtering and lift-off process with the standard photo-lithography (EVG 610, Austria). Cell fluorescence imaging was performed using a Ti (Nikon) fluorescent inverted phase contrast microscope.

Spectral measurement

To a 10 mL volumetric flask containing different amounts of ions, the appropriate amounts of the solution of probe **L** were added using a micropipette. For Hg^{2+} , Fe^{3+} and Cu^{2+} , the system was then diluted with CH_3CN/H_2O (97/3, v/v, pH = 7) mixed solvent to 10 mL; for F⁻, it was diluted with CH_3CN to 10 mL, and then the fluorescence sensing of the ions was conducted. The fluorescence spectra were measured after addition of the ions at room temperature and when equilibrium was reached. Fluorescence measurements were carried out with an excitation and emission slit width of 10 nm.

Cell culture and fluorescence imaging

PC3 cells were grown using a Roswell Park Memorial Institute Medium Modified supplemented with 10% fetal bovine serum, 100 U/mL penicillin and 100 μ g/mL streptomycin at 37 °C and 5% CO₂. One day prior to imaging, the cells were seeded in 6-well flat-bottomed plates. The next day, the cells were incubated with 10 μ M of probe L for 50 min at 37 °C. Before incubating with 50

 μ M Hg²⁺, Fe³⁺ or Cu²⁺ for another 40 ~ 50 min, the cells were rinsed with fresh culture medium three times to remove the remaining sensor, then the fluorescence imaging of intracellular Hg²⁺, Fe³⁺ and Cu²⁺ was observed under an inverted fluorescence microscope.

Determination of cytotoxicity by MTT assay

Cell viability was determined by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide) assays (Sigma-Aldrich). Living cells were plated in a 96-well plate at a concentration of 1×10^5 cells per well. The cells were treated with different concentrations of probe L (0, 10, 50, 100 and 500µM) for about 60 min in a humidified incubator at 37 °C, 5% CO₂. 20µL MTT solution was added to each well of the plate, followed by incubation at 37 °C for 4 h. The supernatants were then aspirated carefully, and the formazan product was dissolved with 150 µL dimethyl sulfoxide. The absorbance was measured at a wavelength of 630 nm with a microplate reader (Multiskan GO, Thermo, USA).

2. Synthesis and Characterization of probe L

Scheme S1. The synthesis of fluorescent probe L.

Compounds 1 and 2 were prepared following the reported procedures.¹ Typically, a

mixture of tris(2-aminoethyl)amine (4.0 g, 27.36 mmol) and Rhodamine B (1.638 g, 3.42 mmol) in dry ethanol (60 mL) was refluxed for 24 h under an N₂ atmosphere. The solvent was then removed by evaporation, and the residue was extracted with CH_2Cl_2 (100 mL) three times, washed with water and dried with MgSO₄ overnight. The CH_2Cl_2 solvent was removed by evaporation to afford a light red oily product. The crude product was purified by column chromatography (MeOH/CHCl₃/NEt₃ = 9/1/1, v/v) to afford 1.71g of a colourless oil **1** in 87.3% yield.

To a stirring solution of 1 (0.6 g, 0.8 mmol) in toluene (30 mL), Et₃N (0.5 mL, 5 mmol) was added followed by NBD-Cl (0.16 g, 0.8 mmol) and the system was stirred for 8 h under reflux. On cooling, the solution was filtered and evaporated to dryness under reduced pressure. Water was added to the residual mass, which was extracted with CHCl₃ (3×50 mL). The combined organic layers, after drying over anhydrous Na₂SO₄ were evaporated under reduced pressure. The desired compound **2** was obtained as a reddish coloured solid after further isolation and purification by passing through a column of silica in 1% MeOH in CHCl₃ as an eluent.

Finally, a mixture of intermediate 2 (500 mg, 0.68 mmol) and 7-hydroxy-2-oxo-2Hchromene-8-carbaldehyde (110 mg, 0.748mmol) in dry MeOH (60 mL) was refluxed for 8 h under N₂ atmosphere. The solvent was removed by evaporation, and then the crude product was purified by column chromatography (CHCl₃/MeOH = 100/2, v/v) to give 260 mg of an orange solid L in 42.6% yield. m.p. 147 ~149 °C; ¹H NMR (500 M, DMSO-d⁶, ppm) δ: 14.01 (s, 1 H, -OH), 9.07 (s, 1 H, -CH=N), 8.57 (s, 1 H, -C-NH), 8.32 (d, J = 5 Hz ,1 H, Ar-H), 7.79 (d, J = 10 Hz, 1 H, Ar-H), 7.72 (d, J = 10 Hz, 1 H, Ar-H), 7.52 (br, 2 H, Ar-H \times 2), 7.26 (d, J = 10 Hz, 1 H, Ar-H), 7.06 (d, J = 5 Hz, 1 H, Ar-H), 6.34 (m, 5 H, Ar-H), 6.14 (d, J = 10 Hz, 2 H, Ar-H), 6.09 (d, J = 10 Hz, 1 H, Ar-H), 6.0 (d, J = 5Hz, 1 H, Ar-H), 3.27 ~ 3.26 (m, 8 H, NCH₂CH₃×4), 3.11 (br, 2 H, NCH₂CH₂N), 2.66 ~ 2.62 (m, 4 H, NCH₂CH₂N), 2.36~ 2.30 (m, 2 H, NCH₂CH₂N), 2.08 (bs, 4H, NCH₂CH₂N) and 1.03-1.01 (m, 12 H, NCH₂CH₃); ¹³C NMR (125 M, DMSOd⁶, ppm) δ: 206.63, 190.41, 176.00, 166.48, 159.65, 159.29, 156.18, 152.74, 148.29, 145.12, 145.02, 144.00, 143.67, 137.50, 133.45, 132.60, 130.81, 128.47, 128.30, 123.57, 122.22, 120.39, 119.15, 108.09, 107.48, 104.99, 104.76, 102.88, 98.85, 96.97, 79.04, 64.07, 52.00, 51.37, 45.62, 43.53, 41.30, 36.83, 30.60, 12.20; MS (ESI/TOF-Q) Calcd for [C₅₀H₅₂N₉O₈]: m/z 906.39388, Found: m/z 906.39436 [M+H]⁺.

Figure S1. ¹H NMR spectrum of probe L in DMSO- d^6 at 25 °C at 500 MHz.

Figure S2. ¹³C NMR spectrum of probe L in DMSO- d^6 at 25 °C (125 MHz).

Figure S3. Mass spectrum of probe L.

Figure S4. Spectral overlap between the energy donor coumarin, 7-nitrobenz-2-oxa-1,3-diazole (NBD) and acceptor rhodamine absorption. $\lambda_{ex (Coumarin)} = 365 \text{ nm}$ and $\lambda_{ex (NBD)} = 470 \text{ nm}$.

Figure S5. Fluorescence spectrum of probe L (20 μ M) with 20 equiv. of different metal ions (measured after 100 min, $\lambda_{ex} = 470$ nm) in CH₃CN/H₂O (97/3, v/v, Tris-HCl, pH 7) solution (inset shows the colour change of probe L in the absence and the presence of Hg²⁺, Cu²⁺ and Fe³⁺ under UV-vis light.).

Figure S6. The Job's plot data of probe L with Cu^{2+} .

Figure S7. Fluorescence spectrum of probe L (20 μ M) with 10 equiv. different anions (F⁻, Cl⁻, Br⁻, I⁻, NO³⁻, HSO₄⁻, H₂PO₄⁻, ClO₄⁻ and AcO⁻) in CH₃CN solution; $\lambda_{ex}/\lambda_{em} = 470$ nm/525 nm.

Figure S8. Fluorescence spectral titration of probe L (20 μ M) with F⁻ in CH₃CN solution; (a) $\lambda_{ex}/\lambda_{em}$ = 365 nm/460 nm; (b) $\lambda_{ex}/\lambda_{em}$ = 470 nm/525 nm.

Figure S9. Fluorescence response of probe L (20 μ M). Red bars: emission intensity of probe L on addition of the respective ions (20 equiv.). Black bars: emission intensity of probe L on addition of the respective competing ions (20 equiv.); (a) $\lambda_{ex}/\lambda_{em} = 365 \text{ nm}/585 \text{ nm}$, (CH₃CN/H₂O, 97/3, v/v, Tris-HCl, pH 7), measured after 2 min; (b) $\lambda_{ex}/\lambda_{em} = 365 \text{ nm}/585 \text{ nm}$, (CH₃CN/H₂O, 97/3, v/v, Tris-HCl, pH 7), measured after 100 min; (c) $\lambda_{ex}/\lambda_{em} = 470 \text{ nm}/525 \text{ nm}$, (CH₃CN/H₂O, 97/3, v/v, Tris-HCl, pH 7), measured after 100 min and (d) $\lambda_{ex}/\lambda_{em} = 365 \text{ nm}/460 \text{ nm}$, (CH₃CN), measured after 2 min.

Figure S10. Fluorescence intensity calibration curve of probe L (20 μ M) as a function of Hg²⁺ (measured immediately) concentration in CH₃CN/H₂O (97/3, v/v, Tris-HCl, pH 7) solution; $\lambda_{ex}/\lambda_{em}$ = 360 nm/ 585 nm; Y = 244.7 X + 31.26, R²= 0.9893, (n = 11), 2 ~ 20 μ M, LOD = 0.110 μ M.

Figure S11. Fluorescence intensity calibration curve of probe L (20 μ M) as a function of Fe³⁺ (measured after 1.5 h) concentration in CH₃CN/H₂O (97/3, v/v, Tris-HCl, pH 7) solution; $\lambda_{ex}/\lambda_{em} =$ 365 nm/ 585 nm; Y = -210.6 + 342.4 X, R² = 0.9851, (n = 12), 12 ~ 36 μ M LOD = 0.074 μ M.

Figure S12. Fluorescence intensity calibration curve of probe L (20 μ M) as a function of Cu²⁺ concentration in CH₃CN/H₂O (97/3, v/v, Tris-HCl, pH 7) solution; λ_{ex} / λ_{em} = 470 nm/ 525 nm; Y = 45.19 + 239.0 X, R² = 0.9910, (n = 13), 4 ~ 28 μ M, LOD = 0.110 μ M.

Figure S13. Fluorescence intensity calibration curve of probe L (20 μ M) as a function of F-concentration in CH₃CN; λ_{ex} / λ_{em} = 365 nm/ 460 nm; Y = 25.69 X + 305.1, R = 0.9764 (n = 10), 2~ 20 μ M LOD = 0.106 μ M.

Figure S14. (a) Mass spectrum of probe L with Hg^{2+} ; (b) Mass spectrum of probe L with Fe^{3+} ; (c) Mass spectrum of probe L with Cu^{2+} .

Figure S15. Effect of time on fluorescence intensity of the probe L with 20 equiv. of different metal ions (measured after equilibrium) in CH₃CN/H₂O (97/3, v/v, Tris-HCl, pH 7) solution. Hg²⁺ (λ_{ex} / λ_{em} = 365 nm/585 nm), Fe³⁺ (λ_{ex} / λ_{em} = 365 nm/ 585 nm) and Cu²⁺ (λ_{ex} / λ_{em} = 365 nm/ 525 nm).

Figure S16. Assessment of cytotoxicity of different concentrations of probe L for 1 h living cells using the cytotoxicity assay (MTT assay). It was performed by directly determining the effect of probe L on cellular viability of living cell under our laboratory conditions. The living cell was either treated with different concentrations of probe L (10, 50, 100 and 500 μ M) or left untreated as a control. The results showed that probe L at the concentrations 0, 10, 50, 100 and 500 μ M had no significant effect on cell viability over about 60 min.

Ion	The linear range of the calibration curve [µM]	Correlation coefficient	Limits of detection [µM] ^a	Association constants $K_a [\mathrm{M}^{-1}]^b (\pm \% K_{error}{}^c)$
$Hg^{2+} (\lambda_{ex} / \lambda_{em} = 365 / 585 \text{ nm})$	$2 \sim 20$	0.9893	0.110	$1.787 \times 10^{13} (\pm 288751)$
Fe ³⁺ ($\lambda_{ex} / \lambda_{em} =$ 365/ 585 nm)	12 ~ 36	0.9851	0.074	$K_1 = 1.739 \times 10^4 (\pm 2)$ $K_2 = 4.887 \times 10^3 (\pm 22)$
$Cu^{2+} (\lambda_{ex} / \lambda_{em} = 470 / 525 \text{ nm})$	$4 \sim 28$	0.9910	0.110	1.347 × 10 ⁵ (±332)
$F^{-} (\lambda_{ex} / \lambda_{em} = 365 / 460 \text{ nm})$	2~20	0.9764	0.106	$9.196 \times 10^{5} (\pm 352)$

Table S1. Analysis parameters for probe L and detection of Hg²⁺, Fe³⁺, Cu²⁺ and F⁻.

^{*a*} The limits of detection (LOD) of probe **L** were determined using the following equation: $\text{LOD} = 3\delta/K$, δ is the standard deviation of the blank solution and *K* is the slope of the calibration curve. ^{*b*} Association constants (*K_a*) based on the fluorescent titration data were calculated using the Thordarson's global-fit method.^{2 c} The % error here is not a measure of precision of replicates but represents the % error resulting from the global-fit calculations since only single titration experiments in each case were conducted.

Sample	Ion	The addition of ion (µM)	Detected (mean ± SD, μM)	Recovery rate (%)	R.S.D. (% n=3)
Tap Water samples *	Hg^{+}	0 8.00 12.00	- 7.50 12.95	- 93.75 107.92	- 1.52 3.92
	Fe ³⁺	0 14.00 24.00 34.00	- 14.06 24.02 33.45	- 100.42 100.06 98.39	- 0.36 1.27 1.54
	Cu ²⁺	0 8.00 12.00 16.00	- 7.54 13.04 15.98	- 94.27 108.58 99.85	2.94 4.10 0.66

Table S2. Recovery assay of spiked of ions in tap water

* Derived from Guizhou university laboratory tap water.

Reference:

- (a) Z. Li, J.-L. Zhao, Y.-T. Wu, L. Mu, X. Zeng, Z. Jin, G. Wei, N. Xie and C. Redshaw, Org. Biomol. Chem., 2017, 15, 8627–8633; (b) B. Biswal, A. Pal and B. Bag, Dalton Trans., 2017, 46, 8975–8991.
- (a) P. Thordarson, Chem. Soc. Rev., 2011, 40, 1305–1323; (b) http://supramolecular.org; (c) P. Job, Ann. Chim., 1928, 9, 113–203.