Supporting Information

Studies Towards the Synthesis of Pd(II)-containing [2] and [3]Catenanes in Aqueous Media

Eva M. López-Vidal,*^a† Aleksandrs Prokofjevs,^b Ian C. Gibbs-Hall,^b Edward J. Dale,^b José M. Quintela^a and Carlos Peinador*^a

^a Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain.

^b Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

† E. M. L.-V. Current address: Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.

*Email: <u>E.M.Lopez.Vidal@bath.ac.uk</u> and <u>carlos.peinador@udc.es</u>

Table of Contents

Section A. Materials / General Methods / Instrumentation	
Section B. Synthetic Procedures and Characterization	S 3
Preparation of pseudorotaxane 2.6Cl	S3
¹ H NMR comparative of CBPQT ·4Cl, pseudorotaxane 2 ·6Cl and axle 1 ·2Cl	S4
Variable temperature ¹ H NMR experiments of pseudorotaxane 2.6 Cl	S5
¹ H NMR comparative of pseudorotaxane 2.6 Cl with and without addition of salt (NaCl)	S6
NMR characterization of pseudorotaxane $2 \cdot 6Cl$ in the presence of salt (NaCl)	S7
Salt effect in the self-assembly of the metallacyclophanes 3^{6+} and 4^{2+}	S10
Salt effect on the coordination ability of [Pd(CH ₃ CN) ₄](BF ₄) ₂ and Pd(CH ₃ CN) ₂ Cl ₂	S11
Preparation of metallacyclophane $3 \cdot (BF_4)_2 Cl_4$	S12
NMR characterization of metallacyclophane $3 \cdot (BF_4)_2 Cl_4$	S12
Mass spectrometry characterization of metallacyclophane $3 \cdot (BF_4)_2 Cl_4$	S15
Preparation of metallacyclophane $4 \cdot Cl_2$	S16
NMR characterization of metallacyclophane $4 \cdot Cl_2$	S17
Mass spectrometry characterization of metallacyclophane $4 \cdot Cl_2$	S20
Catenane self-assembly test using NaNO ₃	S22
Catenane self-assembly test using NaCl	S22
Preparation of [3] catenane 5^{12+} and [2] catenane 6^{6+}	S23
¹ H NMR comparative of CBPQT ⁴⁺ , pseudorotaxane 2^{6+} and catenanes 5^{12+} and 6^{6+}	S25
Section C. Crystal Structures	S26
Crystal structure of pseudorotaxane $[2(ZnCl_3)_2][(ZnCl_4)_2]$	S26
Crystal structure of [3]catenane $5 \cdot (ZnCl_4)_2 Cl_8$	S27

Section A. Materials / General Methods / Instrumentation

All reagents were purchased from commercial suppliers and used without further purification. Axle $1 \cdot 2Cl^1$ and **CBPQT** $\cdot 4Cl^2$, were prepared according to literature procedures. All other reagents used were commercial grade chemicals from freshly opened containers. Milli-Q water was purified with a Millipore Gradient A10 apparatus. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 300, Bruker Advance III and Agilent DD2 spectrometers equipped with a dual cryoprobe for ¹H and ¹³C with working frequencies of 300, 500 and 600 MHz, respectively (¹H NMR), and 75, 125 and 150 MHz, respectively (¹³C NMR) using the deuterated solvent as lock and the residual protiated solvent as internal standard. Chemical shifts are reported in ppm relative to the signals corresponding to the residual non-deuterated solvents (D₂O: $\delta_{\rm H} = 4.79$ ppm). ¹³C NMR spectra were recorded with the simultaneous decoupling of ¹H nuclei. Mass spectrometery experiments were carried out in a LC-Q-q-TOF Applied Biosystems QSTAR Elite spectrometer for low- and high-resolution ESI.

Section B. Synthetic Procedures and Characterization

Preparation of pseudorotaxane 2.6Cl

Scheme S1. Self-assembly of pseudorotaxane 2.6Cl.

A solution of 1·2Cl (12.1 mg, 0.014 mmol) and **CBPQT**·4Cl (9.3 mg, 0.014 mmol) in D₂O (2.8 mL), containing NaCl (115 mg, 1.96 mmol), was stirred at room temperature. After a few minutes the mixture reaches the equilibrium, becoming purple color and yielding the pseudorotaxane **2**·6NO₃ as major species along with a small amount of **CBPQT**·4Cl and 1·2Cl. The following signals correspond to new species, pseudorotaxane **2**·6Cl. ¹*H NMR* (500 *MHz*, *D*₂*O*, 298 *K*) δ : 9.05 (8H, 2d), 8.90 (4H, d, *J* = 6.5 Hz), 8.87 (4H, d_{broad}), 8.42 (4H, d, *J* = 6.7 Hz), 7.97 (4H, d, *J* = 4.8 Hz), 7.92 (8H, 2s), 7.58 (4H, d, *J* = 5.1 Hz), 7.41 (4H, d, *J* = 5.2 Hz), 6.40 (2H, d, *J* = 7.9 Hz), 6.06 (2H, t, *J* = 8.0 Hz), 5.71 (8H, s), 4.94-4.92 (4H, m), 4.36-4.35 (4H, m), 4.26-4.25 (4H, m), 4.16-4.14 (4H, m), 4.11-4.10 (4H, m), 4.00-3.99 (4H, m), 3.85-3.82 (8H, m), 2.42-2.40 (2H, d, *J* = 8.2 Hz). ¹³*C NMR* (125 *MHz*, *D*₂*O*, 298 *K*) δ : 153.0 (C), 151.07 (C), 149.5 (CH), 145.4 (CH), 145.1 (C), 145.0 (CH), 143.6 (CH), 142.5 (C), 136.3 (C), 131.3 (CH), 131.0 (CH), 128.2 (CH), 126.0 (CH),

125.4 (CH), 124.7 (CH), 124.4 (C), 122.8 (CH), 108.3 (CH), 104.2 (CH), 70.5 (CH₂), 69.7 (2CH₂), 69.6 (CH₂), 68.5 (2CH₂), 68.0 (CH₂), 64.8 (CH₂), 60.7 (CH₂).

¹*H* NMR comparative of *CBPQT*·4*Cl*, pseudorotaxane 2·6*Cl* and axle 1·2*Cl*

Fig. S1. Partial ¹H NMR spectra (500 MHz, D₂O, 298 K) of: i) **CBPQT**·4Cl, ii) an equimolar mixture of **1**·2Cl and **CBPQT**·4Cl (5 mM), iii) **1**·2Cl.

Variable temperature ¹H NMR experiments of pseudorotaxane 2.6Cl

Fig. S2. Variable temperature partial ¹H NMR spectra (600 MHz, D₂O) of an equimolar mixture of 1.2Cl and **CBPQT**.4Cl (5 mM) at: i) 348 K, ii) 338 K, iii) 328 K, iv) 318 K, v) 308 K and vi) 298 K.

¹H NMR comparative of pseudorotaxane 2.6Cl with and without addition of salt (NaCl)

Fig. S3. Partial ¹H NMR spectra (500 MHz, D₂O, 298 K) of an equimolar mixture of **1**·2Cl and **CBPQT**·4Cl(5 mM): i) containing salt (NaCl (0.7 M)) and ii) without salt.

NMR characterization of pseudorotaxane 2.6Cl in the presence of salt (NaCl)

Fig. S4. Annotated ¹H NMR spectrum (500 MHz, D₂O, 298 K) of pseudorotaxane **2** 6Cl in the presence of NaCl. Red cross denotes residual solvent peak.

Fig. S5. ¹³C NMR and DEPT-135 spectra (125 MHz, D₂O, 298 K) of pseudorotaxane **2**·6Cl in the presence of NaCl.

Fig. S6. HSQC (500 and 125 MHz for ¹H and ¹³C, D₂O, 298 K) of pseudorotaxane 2.6Cl in the presence of NaCl.

Fig. S7. HMBC (500 and 125 MHz for ¹H and ¹³C, D₂O, 298 K) of pseudorotaxane **2**·6Cl in the presence of NaCl.

Fig. S8. COSY (500 MHz, D₂O, 298 K) of pseudorotaxane 2.6Cl in the presence of NaCl.

Salt effect in the self-assembly of the metallacyclophanes 3^{6+} and 4^{2+}

Scheme S2. Effect of salt addition in the self-assembly of the metallacyclophanes 3^{6+} and 4^{2+} .

Preparation of metallacyclophane $3 (BF_4)_2 Cl_4$

Scheme S3. Self-assembly of metallacyclophane 3 · (BF₄)₂Cl₄.

A solution containing 1·2Cl (12.1 mg, 0.014 mmol) and $[Pd(CH_3CN)_4](BF_4)_2$ (3.1 mg, 7.2×10⁻³ mmol) in D₂O (2.8 mL) was stirred at room temperature resulting in the self-assembly of the metallacyclophane **3**·(BF₄)₂Cl₄ as major product. ¹*H NMR (500 MHz, D₂O, 298 K)* δ : 9.53 (8H, d, *J* = 6.7 Hz), 8.83 (8H, d, *J* = 6.8 Hz), 8.05 (8H, d, *J* = 6.9 Hz), 7.94 (8H, d, *J* = 6.8 Hz), 6.86 (4H, t, *J* = 8.0 Hz), 6.77 (4H, d, *J* = 7.8 Hz), 6.60 (4H, d, *J* = 8.3 Hz), 4.79 (8H, hidden), 4.26 (8H, m), 3.97-3.95 (16H, m), 3.71-3.61 (24H, m), 3.56-3.54 (8H, m). ¹³*C NMR (125 MHz, D₂O, 298 K)* δ : 153.0 (C), 152.2 (CH), 149.7 (C), 145.4 (CH), 145.0 (C), 125.8 (CH), 125.4 (C), 125.3 (CH), 125.2 (CH), 113.0 (CH), 106.0 (CH), 70.4 (CH₂), 70.1 (CH₂), 69.6 (CH₂), 69.5 (CH₂), 69.2 (CH₂), 68.4 (CH₂), 67.5 (CH₂), 61.1 (CH₂). HRMS-ESI *(m/z)*: calculated for [**3**–2Cl–2BF₄]⁴⁺ 439.1568, found 439.1680.

Fig. S10. Annotated ¹H NMR spectrum (500 MHz, D₂O, 298 K) of metallacyclophane **3**·(BF₄)₂Cl₄. Red cross denotes residual solvent peak.

Fig. S11. ¹³C NMR and DEPT-135 spectra (125 MHz, D₂O, 298 K) of metallacyclophane 3·(BF₄)₂Cl₄.

Fig. S15. HRMS-ESI theoretical isotopic distribution (above) and experimental isotopic distribution (below) for the fragment [**3**-2Cl-2BF₄]⁴⁺.

Scheme S4. Self-assembly of metallacyclophane 4 · Cl₂ using NaCl.

NaCl (29.3 mg, 0.5 mmol) was added over a solution containing $1 \cdot 2Cl$ (6.2 mg, 7.2×10^{-3} mmol) and $[Pd(CH_3CN)_4](BF_4)_2$ (1.6 mg, 3.6×10^{-3} mmol) in D₂O (1.44 mL). The mixture was stirred at room temperature resulting in the self-assembly of the metallacyclophane $4 \cdot Cl_2$ along with free axle $1 \cdot 2Cl$. The next signals belong to metallacyclophane $4 \cdot Cl_2$. ¹*H NMR* (500 *MHz*, *D*₂O, 298 *K*) δ : 9.75 (4H, d, *J* = 5.9 Hz), 8.87 (4H, d, *J* = 6.5 Hz), 8.09 (4H, d, *J* = 6.6 Hz), 7.96 (4H, d, *J* = 6.2 Hz), 6.89 (2H, t, *J* = 8.1 Hz), 6.81 (2H, d, *J* = 7.8 Hz), 6.54 (2H, d, *J* = 8.4 Hz), 4.79 (4H, hidden), 4.30 (4H, m), 4.00-3.97 (8H, m), 3.82-3.58 (16H, m). ¹³*C NMR* (125 *MHz*, *D*₂O, 298 *K*) δ : 153.0 (C), 152.5 (CH), 149.8 (C), 145.4 (CH), 144.8 (C), 125.4 (CH), 125.3 (C), 125.1 (CH), 124.7 (CH), 113.0 (CH), 106.1 (CH), 70.5 (CH₂), 70.2 (CH₂), 69.7 (CH₂), 69.6 (CH₂), 69.4 (CH₂), 68.5 (CH₂), 67.6 (CH₂), 61.1 (CH₂). HRMS-ESI (*m*/*z*): calculated for [4–2Cl]²⁺ 483.1171, found 483.1165; calculated for [4–4Cl]²⁺ 448.1482, found 448.1503.

NMR characterization of metallacyclophane 4·Cl₂

Fig. S16. Annotated ¹H NMR spectrum (500 MHz, D₂O, 298 K) of metallacyclophane **4**·Cl₂. Red cross denotes residual solvent peak.

Fig. S17. ¹³C NMR and DEPT-135 spectra (125 MHz, D₂O, 298 K) of metallacyclophane $4 \cdot Cl_2$.

Fig. S21. HRMS-ESI theoretical isotopic distribution (above) and experimental isotopic distribution (below) for the fragment [4-2Cl]²⁺.

Fig. S22. HRMS-ESI theoretical isotopic distribution (above) and experimental isotopic distribution (below) for the fragment [**4**-4Cl+2e⁻]²⁺.

Catenane self-assembly test using NaNO₃

Fig. S23. ¹H NMR spectra (500 MHz, D₂O, 298 K) of an equimolar mixture of 1·2Cl, **CBPQT**·4Cl and [Pd(CH₃CN)₄](BF₄)₂ (5 mM) in the presence of NaNO₃ (0.7 M).

Catenane self-assembly test using NaCl

Fig. S24. ¹H NMR spectra (500 MHz, D₂O, 298 K) of: i) an equimolar mixture of 1·2Cl, **CBPQT**·4Cl and [Pd(CH₃CN)₄](BF₄)₂ (5 mM) in the presence of NaCl (0.7 M); ii) after addition of ZnCl₂ (10 equiv.).

Preparation of [3] catenane 5^{12+} and [2] catenane 6^{6+}

Scheme S5. Self-assembly of the [3] catenane 5^{12+} and the [2] catenane 6^{6+} .

Over a solution containing 1.2Cl (3.9 mg, 4.7×10^{-3} mmol), **CBPQT**·4Cl (3 mg, 4.7×10^{-3} mmol) and NaCl (38.3 mg, 0.65 mmol) in D₂O (0.9 mL), was added [Pd(CH₃CN)₄](BF₄)₂ (2.1 mg, 4.7×10^{-3} mmol) and ZnCl₂ (6.4 mg, 4.7×10^{-2} mmol). The mixture was stirred at room temperature producing the self-assembly of two species, [3]catenane **5**¹²⁺ and [2]catenane **6**⁶⁺.

The following signals correspond to [3]catenane 5^{12+} . ¹*H* NMR (500 MHz, *D*₂O, 298 K) δ : 9.22 (8H, d, *J* = 6.5 Hz), 9.01 (8H, d, *J* = 6.6 Hz), 8.94 (8H, d, *J* = 7.1 Hz), 8.80 (8H, d, *J* = 6.6 Hz), 8.32 (8H, d, *J* = 6.5 Hz), 8.01 (8H, d, *J* = 6.9 Hz), 7.83 (8H, s), 7.80 (8H, s), 7.42 (8H, d, *J* = 5.3 Hz), 7.29 (8H, d, *J* = 6.2 Hz), 6.30 (4H, d, *J* = 8.1 Hz), 5.94 (4H, t, *J* = 8 Hz), 5.64 (8H, d, *J* = 13.8 Hz), 5.58 (8H, d, *J* = 13.6 Hz), 4.89 (8H, t_{broad}), 4.27-3.77 (56H, multiplets), 2.21 (4H, d, *J* = 8.1 Hz).

The following signals correspond to [2]catenane 6^{6+} . ¹*H NMR* (500 *MHz*, *D*₂*O*, 298 *K*) δ : 9.27 (4H, d, 6.3 Hz), 9.05 (4H, d, *J* = 6.5 Hz), 8.94 (4H, d), 8.87 (4H, d, *J* = 6.5 Hz), 8.37 (4H, d, *J* = 6.5 Hz), 8.18 (4H, d, *J* = 6.4 Hz), 8.01 (4H, d_{broad}), 7.67 (4H, d_{broad}), 7.52 (4H, d, *J* = 5.9 Hz), 7.37 (4H, d, *J* = 6.6 Hz), 6.30 (2H, d, *J* = 8.1 Hz), 6.04 (2H, t, *J* = 8 Hz), 5.78 (4H, d, *J* = 13.4 Hz), 5.70 (4H, d, *J* = 13.4 Hz), 4.93 (4H, t_{broad}), 4.25 (4H, m), 4.10 (8H, m), 3.92 (4H, m), 3.81 (4H, m), 3.77 (8H, m), 2.36 (2H, d, *J* = 8.2 Hz).

¹*H* NMR comparative of **CBPQT**⁴⁺, pseudorotaxane 2^{6+} and catenanes 5^{12+} and 6^{6+}

Fig. S25. Partial ¹H NMR spectra (500 MHz, D₂O, 298 K) of: i) CBPQT·4Cl; ii) an equimolar mixture of 1·2Cl and CBPQT·4Cl (5 mM) in the presence of NaCl (0.7 M); iii) the previous mixture after addition of [Pd(CH₃CN)₄](BF₄)₂ (1 equiv.) and ZnCl₂ (10 equiv.), same spectrum as S24 ii).
iv), v) and vi) are the partial ¹H NMR spectra (500 MHz, D₂O, 298 K) resulting from the dilution experiments of the crystals belonging to the [3]catenane 5·(ZnCl₄)₂Cl₈.

Section C. Crystal Structures

Crystal structure of pseudorotaxane [2(ZnCl₃)₂][(ZnCl₄)₂]

Addition of $ZnCl_2$ (10 equiv.) to an equimolar solution of **CBPQT**⁴⁺ and **1**²⁺ (5 mM) in 0.7 M aq NaCl produced precipitation of a purple solid. The liquid fraction was separated from the precipitate, collected and stored for several days at room temperature producing purple plate-like crystals corresponding to $[2(ZnCl_3)_2][(ZnCl_4)_2]$.

Suitable crystals for $[2(ZnCl_3)_2][(ZnCl_4)_2]$ were selected and mounted in inert oil and transferred to the cold gas stream of a Kappa Apex 2 diffractometer. The crystals were kept at 100.00 K during data collection. Using Olex2³, the structures were solved with the ShelXT⁴ structure solution program using Direct Methods and refined with the ShelXL⁵ refinement package using Least Squares minimization.

	$[2(\text{ZnCl}_3)_2][(\text{ZnCl}_4)_2]$
Empirical formula	$C_{82}H_{92}Cl_{14}N_8O_{14}Zn_4$
$M_{ m r}$	2171.41
Temperature [K]	100.0
Crystal size [mm ³]	$0.387 \times 0.176 \times 0.046$
Crystal system	Triclinic
Space group	P-1
<i>a</i> [Å]	14.5280(10)
<i>b</i> [Å]	16.6911(12)
<i>c</i> [Å]	20.7097(14)
α [°]	105.917(3)
β [°]	91.108(3)
γ [°]	105.758(3)
V [Å ³]	4623.9(6)
Ζ	2
$\rho_{\text{calcd}} [\text{Mg m}^{-3}]$	1.560
$\mu [\mathrm{mm}^{-1}]$	5.432
F(000)	2220
θ range [°]	4.46 to 133.388°
<i>hkl</i> ranges	$-14 \le h \le 17, -19 \le k \le 19, -24 \le l \le 24$
Reflections collected	55819
Independent reflections	16113
R _{int}	0.0372
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0685, wR_2 = 0.1951$
<i>R</i> indices (all data)	$R_1 = 0.0737, wR_2 = 0.2022$
Goodness-of-fit on F^2	1.051

Table S1. Summary of crystallographic X-ray experimental data and refinement for $[2(ZnCl_3)_2][(ZnCl_4)_2]$.

Crystal structure of [3] catenane $5 \cdot (ZnCl_4)_2 Cl_8$

Slow evaporation of an equimolar mixture of axle 1^{2+} , **CBPQT**⁴⁺ and [Pd(CH₃CN)₄](BF₄)₂ (5 mM) in D₂O (0.7 M NaCl) containing ZnCl₂ (10 equiv.) produced purple crystals corresponding to $5 \cdot (ZnCl_4)_2 Cl_8$.

Suitable crystals for $5 \cdot (ZnCl_4)_2 Cl_8$ were selected and mounted in inert oil and transferred to the cold gas stream of a Kappa Apex 2 diffractometer. The crystals were kept at 100.02 K during data collection. Using $Olex2^3$, the structures were solved with the ShelXT⁴ structure solution program using Direct Methods and refined with the ShelXL⁵ refinement package using Least Squares minimization.

Solvent Treatment Details: Total solvent accessible volume / cell = 836.3 Å³ [17.0%] Total electron count / cell = 302.5 The solvent masking procedure as implemented in Olex2 was used to remove the electronic contribution of solvent molecules from the refinement. As the exact solvent content was not known, only the atoms used in the refinement model are reported in the formula here.

	$5 \cdot (ZnCl_4)_2 Cl_8$
Empirical formula	$C_{164}H_{192}Cl_{20}N_{16}O_{26}Pd_2Zn_2$
$M_{ m r}$	3855.86
Temperature [K]	100.02
Crystal size [mm ³]	$0.311 \times 0.033 \times 0.01$
Crystal system	Triclinic
Space group	P-1
<i>a</i> [Å]	12.2761(4)
<i>b</i> [Å]	19.5771(7)
<i>c</i> [Å]	20.4123(8)
α [°]	91.369(2)
β [°]	90.147(2)
γ [°]	97.5953(19)
V [Å ³]	4861.2(3)
Ζ	1
$\rho_{\text{calcd}} [\text{Mg m}^{-3}]$	1.317
$\mu [\mathrm{mm}^{-1}]$	0.765
F(000)	1988
θ range [°]	1.996 to 53.038°
<i>hkl</i> ranges	$-15 \le h \le 15, -24 \le k \le 24, -25 \le l \le 25$
Reflections collected	58662
Independent reflections	20008
$R_{\rm int}$	0.0622
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0710, wR_2 = 0.1879$
<i>R</i> indices (all data)	$R_1 = 0.1108, wR_2 = 0.2055$
Goodness-of-fit on F^2	1.031

Table S2. Summary of crystallographic X-ray experimental data and refinement for $5.8Cl \cdot 2ZnCl_4$.

² B. Odell, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, D. J. Williams, *Angew. Chem., Int. Ed. Engl.* **1988**, *27*, 1547–1550.

³ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. **2009**, 42, 339–341.

⁴ G. Sheldrick, Acta. Crystallogr. Sect. A 2015, 71, 3-8.

⁵ G. Sheldrick, Acta. Crystallogr. Sect. A **2008**, 64, 112–122.

¹ E. M. López-Vidal, M. D. García, C. Peinador, J. M. Quintela, Chem. Eur. J. 2015, 21, 2259-2267.