Supplementary Information

High Temperature Hydrothermal Synthesis of Rare-Earth Titanates: Synthesis and Structure of $RE_5Ti_4O_{15}(OH)$ (RE = La, Er), $Sm_3TiO_5(OH)_3$, $RE_5Ti_2O_{11}(OH)$ (RE = Tm-Lu) and $Ce_2Ti_4O_{11}$

Kyle Fulle, Liurukara. D. Sanjeewa, Colin D. McMillen, Joseph W. Kolis*

Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, South Carolina 29634-0973, USA

Synthesis

Synthesis of La₅Ti₄O₁₅OH and Er₅Ti₄O₁₅(OH) Synthesis of Lu₅Ti₂O₁₁(OH), Yb₅Ti₂O₁₁(OH) and Tm₅Ti₂O₁₁(OH) Synthesis of Sm₃TiO₅(OH) Synthesis of Ce₂Ti₄O₁₁ Synthesis of RE_2 Ti₂O₇ (RE = La, Pr, Nd, Gd– Lu) Single Crystals

Structure Refinement of Lu₅Ti₂O₁₁(OH)

Table SI 1: Crystallographic data for hydrothermally grown Er₅Ti₄O₁₅(OH).

Table SI 2: Selected bond lengths (Å) of La₅Ti₄O₁₅(OH) and Er₅Ti₄O₁₅(OH).

Table SI 3: Selected bond lengths (Å) of Sm₃TiO₅(OH)₃, Lu₅Ti₂O₁₁(OH), and Ce₂Ti₄O₁₁.

Table SI 4: Bond valence sum calculations of La₅Ti₄O₁₅(OH) and Er₅Ti₄O₁₅(OH).

Table SI 5: Bond valence sum calculations of Sm₃TiO₅(OH)₃, Lu₅Ti₂O₁₁(OH) and Ce₂Ti₄O₁₁.

Table SI 6: EDX of reported rare-earth titanates with experimental and expected RE: Ti ratios.

Table SI 7: Summary of *M*–*M* bond distances for $RE_5M_2O_{12}$ (*M* = Ru, Re) and $RE_5Ti_2O_{11}$ (OH) compounds.

Figure SI 1: PXRD patterns of $La_5Ti_4O_{15}(OH)$. (a) Simulated powder pattern based on single crystal data of $La_5Ti_4O_{15}(OH)$; (b) Observed PXRD of $La_5Ti_4O_{15}(OH)$.

Figure SI 2: PXRD patterns of $Sm_3TiO_5(OH)_3$. (a) Simulated powder pattern based on single crystal structure data of $Sm_3TiO_5(OH)_3$; (b) Observed PXRD pattern for the $Sm_3TiO_5(OH)_3$ reaction and impurities of $Sm(OH)_3$ (00-006-0117) and SmO(OH) (00-013-0168) were observed (*).

Figure SI 3: PXRD patterns of $RE_5Ti_2O_{11}(OH)$ series of compounds. (a) Calculated PXRD pattern of $Lu_5Ti_2O_{11}(OH)$ based on single crystal data. Observed PXRD patterns of hydrothermally grown (b) $Lu_5Ti_2O_{11}(OH)$, (c) Yb₅Ti₂O₁₁(OH) and (d) Tm₅Ti₂O₁₁(OH).

Figure SI 4: PXRD patterns of Ce₂Ti₄O₁₁. (a) Calculated powder pattern of Ce₂Ti₄O₁₁ based on single crystal structure refinement; (b) Observed PXRD pattern of the Ce₂Ti₄O₁₁ reaction. Impurities of Ce(OH)₃ (00-054-1268) and Ti₂O₃ (01-071-0150) are highlighted using (*) and (\blacktriangle), respectively.

Figure SI 5: Single crystal Raman spectra of $Ce_2Ti_4O_{11}$, $La_5Ti_4O_{15}(OH)$, $Lu_5Ti_2O_{11}(OH)$ and $Sm_3TiO_5(OH)_3$ compounds. The bands in the range of 3600-3500 cm⁻¹ confirm the presence of hydroxide groups in $La_5Ti_4O_{15}(OH)$, $Lu_5Ti_2O_{11}(OH)$ and $Sm_3TiO_5(OH)_3$ compounds, while $Ce_2Ti_4O_{11}$ did not exhibit the characteristic OH stretching vibration.

Figure SI 6: Polyhedral view of the two dimensional Ti–O–Ti lattice of $La_5Ti_4O_{15}(OH)$, propagating infinitely in the *bc* plane.

Figure SI 7: Section of the crystal structure of $La_5Ti_4O_{11}(OH)$ showing the connectivity between La–O–La lattice and Ti–O–Ti lattice along the *ac*-plane.

Figure SI 8: (a) Sm–O–Sm lattice of Sm₃TiO₅(OH)₃ along *ab*-plane with propagation of the Sm–O–Sm lattice along the *a* and *b* axes; (b) partial structure of Sm–O–Sm chains in the Sm₃TiO₅(OH)₃ structure showing the triangular units built from one Sm(1)O₈ and two Sm(2)O₇ units.

Figure SI 9: (a) The Sm–O–Ti–O–Sm lattice of $Sm_3TiO_5(OH)_3$; (b) Connectivity between $Sm(1)O_8$ and $Ti(1)O_5$ units; (c) Connectivity between $Sm(2)O_7$ and $Ti(1)O_5$ units.

Synthesis

Synthesis of La₅Ti₄O₁₅(OH) and Er₅Ti₄O₁₅(OH)

The La₅Ti₄O₁₅(OH) crystals were synthesized by a direct hydrothermal reaction of binary metal oxides. A total of 0.2 g of La₂O₃ (134.2 mg, 0.412 mmol) and TiO₂ (65.8 mg, 0.824 mmol) were used in a stoichiometric ratio of 1 : 2 with 0.4 mL of 20 M KOH. The crystals were colorless needles with an average length of 0.5 mm. In the case of the $Er_5Ti_4O_{15}(OH)$, 0.2 g of Er_2O_3 (141.1 mg, 0.369 mmol) and TiO₂ (58.9 mg, 0.738 mmol) in a 1 : 2 molar ratio with 0.4 mL of 20 M KOH were used and pink crystals of $Er_5Ti_4O_{15}(OH)$ were retrieved after washing with deionized water.

Synthesis of Lu₅Ti₂O₁₁(OH), Yb₅Ti₂O₁₁(OH) and Tm₅Ti₂O₁₁(OH)

Lu₅Ti₂O₁₁(OH) was synthesized by using a mixture of Lu₂O₃ (142.7 mg, 0.359 mmol) and TiO₂ (57.3 mg, 0.717 mmol) in a 1 : 2 molar ratio with 0.4 mL of 20 M KOH. Similarly method was employed to synthesize Yb₅Ti₂O₁₁OH and Tm₅Ti₂O₁₁OH derivatives. For Yb₅Ti₂O₁₁OH a mixture of Yb₂O₃ (142.3 mg, 0.361 mmol), and TiO₂ (57.7 mg, 0.722 mmol) and for Tm₅Ti₂O₁₁OH a mixture of Tm₂O₃ (141.4 mg, 0.367 mmol) and TiO₂ (58.6 mg, 0.733 mmol) were used. The single crystals of Lu₅Ti₂O₁₁(OH) with the average size of ~0.5 mm on the edge.

Synthesis of Sm₃TiO₅(OH)

The best reaction to synthesize single crystals of $Sm_3TiO_5(OH)$ is 3 : 2 molar ratio between Sm_2O_3 and TiO_2 . Herein, a total of 0.2 g of Sm_2O_3 (13.5 mg, 0.498 mmol) and TiO_2 (26.5 mg, 0.332 mmol) were used with 0.4 mL of 20 M KOH. The resulted crystals were crystals were yellow blocks with an average size of 1 mm.

Synthesis of Ce₂Ti₄O₁₁

The single crystals of $Ce_2Ti_4O_{11}$ were synthesized by a direct hydrothermal reaction using binary metal oxides of Ce_2O_3 (101.4 mg, 0.309 mmol) and TiO_2 (98.6 mg, 1.235 mmol) in a 1 : 4 molar ratio, with a 0.4 mL of 6 M CsF. The resulting crystals were dark red polyhedra with an average size of 0.3 mm.

Synthesis of *RE*₂Ti₂O₇ (*RE* = La, Pr, Nd, Gd– Lu) Single Crystals

All the RE_2 Ti₂O₇ phases were synthesized mainly using 30 M CsF as the mineralizer. However, in some cases 20 M KOH also produced RE_2 Ti₂O₇ type compounds. Herein, two classes of RE_2 Ti₂O₇ were mainly observed. First series of RE_2 Ti₂O₇ (RE = La, Pr and Nd) crystalize inmonoclinic crystal system with space group of $P2_1$ and second series is pyrochlore- RE_2 Ti₂O₇ compounds crystalize in cubic Fd-3m space group. In all the cases, reaction stoichiometry was 1 : 2 between RE_2 O₃ and TiO₂, except for Tb-oxide reaction. In Tb-oxide reaction, Tb₄O₇ was used in the ratio of 1 : 4 with TiO₂. All the reactions were performed using a total of 0.2 g of reactants with 0.4 mL of appropriate mineralizer. The detail amount of reactants for each reactions are summarized below.

For La₂Ti₂O₇: 134.2 mg (0.412 mmol) of La₂O₃ and 65.8 mg (0.824mmol) of TiO₂; for Pr₂Ti₂O₇: 134.7 mg (0.409 mmol) of Pr₂O₃ and 65.3 mg (0.817 mmol) of TiO₂; for Nd₂Ti₂O₇: 135.6 mg (0.403 mml) of Nd₂O₃ and 64.4 mg (0.806 mmol) of TiO₂; for Gd₂Ti₂O₇: 138.8 mg of (0.383 mmol) Gd₂O₃ and 61.2 mg (0.766 mmol) of TiO₂; for Tb₂Ti₂O₇: 140.1 mg (0.187 mmol) of Tb₄O₇ and 59.9 mg (0.750 mmol) of TiO₂; for Dy₂Ti₂O₇: 140.0 mg (0.375 mmol) of Dy₂O₃ and 60.0 mg (0.751 mmol) of TiO₂: for Ho₂Ti₂O₇: 140.6 mg of (0.372 mmol) Ho₂O₃ and 59.4 mg of (0.744 mmol) TiO₂; for Er₂Ti₂O₇; 141.1 mg (0.369 mmol) of Er₂O₃ and 58.9 mg (0.738 mmol) of

TiO₂; for Tm₂Ti₂O₇: 141.4 mg (0.367 mmol) of Tm₂O₃ and 58.6 mg (0.733 mmol) of TiO₂; for Yb₂Ti₂O₇: 142.3 mg (0.361 mmol) of Yb₂O₃ and 57.7 mg (0.722 mmol) of TiO₂; for Lu₂Ti₂O₇; 142.7 mg (0.359 mmol) of Lu₂O₃ and 57.3 mg (0.717 mmol) of TiO₂.

Structure Refinement of Lu₅Ti₂O₁₁(OH)

Data collection and processing proceeded in the same manner as all the compounds in this study as described in the main body of the manuscript. The primary atomic positions for the Lu, Ti and O atoms were easily identified using intrinsic phasing and subsequent refinement from the difference electron density map. The Lu and Ti sites were easily distinguishable on the basis of their bond lengths, as well as their anisotropic displacement parameters. However, significant electron density remained in the difference electron density map, suggesting some unaccounted for twinning or disorder may be present. Both circumstances are present in the literature surrounding this structure type. After application of the twin law [-1 0 -1 0 -1 0 0 0 1] (with refined BASF of 0.127) there was still a significant peak of electron density remaining within the lutetium oxide framework, and having appropriate interatomic distances to oxygen to suggest a disordered arrangement of lutetium. Free refinement of the occupancy of this disordered site (Lu4) suggested it was approximately 3.4% occupied by Lu. Occupancy values for the remaining Lu sites were appropriately reduced to maintain a stoichiometry of "Lu₅Ti₂O₁₂". Further, the shape of the anisotropic displacement parameter of the Lu3 site suggested it should be split into two disordered positions. These steps produced reasonable ADPs for all Lu atoms and accounted for all of the significant remaining electron density (the highest remaining peak is found to be 1.28 e/Å³).

Raman spectroscopy revealed the presence of OH in the structure, and the O2 site was found to be underbonded by a bond valence sum analysis. A partially-occupied H atom was assigned to a sterically-favorable position about the O2 atom. Importantly, this resulted in the charge balanced formula of $Lu_5Ti_2O_{11}(OH)$. Other possibilities for charge balance were considered, including those that may make use of the disordered site identified as Lu4. However, the colorless nature of the crystals, the presence of the OH stretching vibration in the Raman spectrum, the elemental analysis by EDX, and the local geometries of the crystallographic sites were all supportive of $Lu_5Ti_2O_{11}(OH)$. The final R1 and wR2 values for this model were 0.0294 and 0.0701, respectively. The powder X-ray diffraction pattern calculated from the single crystal structural model is in excellent agreement with the experimental PXRD data (Figure SI 3).

empirical formula	Er ₅ Ti ₄ O ₁₅ (OH)
formula weight (g/mol)	1284.91
crystal system	orthorhombic
space group, Z	<i>Pnnm</i> (no. 58), 4
temperature, K	298(2)
crystal size (mm)	0.12 x 0.08 x 0.02
<i>a</i> , Å	29.7954(13)
<i>b</i> , Å	5.3286(2)
<i>c</i> , Å	7.4498(3)
volume, Å ³	1182.79(8)
calculated density ($\mu g/m^3$)	7.216
absorption coefficient (mm ⁻¹)	37.694
F(000)	2228
Tmax, Tmin	1.0000, 0.4169
Θ range for data	2.734-33.355
reflections collected	2349
data/restraints/parameters	2349/0/132
final R [<i>I</i> > 2 σ (<i>I</i>)] R1, wR2	0.0244/0.0553
final R (all data) R1, wR2	0.0297/0.0566
goodness-of-fit on F ²	1.140
largest diff. peak/hole, e/ Å ³	2.241/-2.155

Table SI 1: Crystallographic data for hydrothermally grown Er₅Ti₄O₁₅(OH).

	(OH)	Er ₅ Ti ₄ O ₁	5(OH)
La(1)	\mathbf{D}_{8}	Er(1)	O_8
$La(1) - O(1) \ge 2$	2.631(3)	$Er(1) - O(1) \ge 2$	2.418(4)
$La(1) - O(4) \ge 2$	2.567(3)	$Er(1) - O(4) \ge 2$	2.470(4)
$La(1) - O(5) \ge 2$	2.500(3)	$Er(1) - O(5) \ge 2$	2.353(4)
La(1) - O(6)	2.517(3)	Er(1) - O(6)	2.296(5)
La(1) - O(7)	2.586(4)	Er(1) - O(7)	2.342(5)
La(2)	D ₇	Er(2)	07
$La(2) - O(2) \ge 2$	2.360(4)	$Er(2) - O(2) \times 2$	2.185(5)
La(2) - O(3)	2.567(4)	Er(2) - O(3)	2.308(5)
$La(2) - O(4) \ge 2$	2.471(3)	$Er(2) - O(4) \ge 2$	2.297(4)
$La(2) - O(5) \ge 2$	2.503(3)	$Er(2) - O(5) \ge 2$	2.443(4)
La(3)	\mathbf{D}_{8}	Er(3)	O ₈
$La(3) - O(2) \ge 2$	2.366(3)	$Er(3) - O(2) \ge 2$	2.234(3)
$La(3) - O(4) \ge 2$	2.603(3)	$Er(3) - O(4) \ge 2$	2.494(4)
$La(3) - O(5) \ge 2$	2.605(3)	$Er(3) - O(5) \ge 2$	2.463(4)
$La(3) - O(6) \ge 2$	2.531(3)	$Er(3) - O(6) \ge 2$	2.380(3)
La(4)	\mathbf{D}_{8}	Er(4)	O ₈
$La(4) - O(1) \ge 2$	2.652(3)	$Er(4) - O(1) \ge 2$	2.444(4)
La(4) - O(7)	2.528(4)	Er(4) - O(7)	2.301(5)
$La(4) - O(8) \ge 2$	2.567(3)	$Er(4) - O(8) \ge 2$	2.433(4)
La(4) - O(10) x	2.504(3)	Er(4) - O(10) x	2.293(4)
2	,	2	
La(4) - O(11)	2.457(4)	Er(4)–O(11)	2.234(5)
La(5)	D ₈	Er(5)	O ₈
$La(5) - O(8) \ge 2$	2.404(3)	Er(5)–O(8) x 2	2.244(4)
La(5) - O(9)	2.533(4)	Er(5) - O(9)	2.291(5)
La(5) - O(10) x	2.711(3)	Er(5) - O(10) x	2.242(4)
2		2	
La(5)–O(10) x	2.758(3)	Er(5)–O(10) x	2.643(4)
2		2	
La(5)–O(11)	2.512(4)	Er(5)–O(11)	2.253(5)
Ti(1)(\mathbf{D}_{6}	Ti(1)	O ₆
Ti(1) - O(1)	2.267(3)	Ti(1) - O(1)	2.235(4)
Ti(1) - O(3)	1.979(3)	Ti(1) - O(3)	1.908(4)
Ti(1) - O(4)	1.803(3)	Ti(1) - O(4)	1.801(4)
Ti(1)-O(5)	1.866(3)	Ti(1)-O(5)	1.858(4)
Ti(1)-O(7)	2.107(3)	Ti(1)-O(7)	2.014(4)
Ti(1) - O(8)	2.027(3)	Ti(1) - O(8)	2.043(4)
Ti(2)(D ₆	Ti(2)	O ₆
Ti(2)–O(1)	1.827(3)	Ti(2)-O(1)	1.823(4)
Ti(2) - O(8)	1.920(3)	Ti(2) - O(8)	1.920(4)
Ti(2) - O(9)	1.968(3)	Ti(2) - O(9)	1.911(4)
Ti(2) - O(10)	1.978(3)	Ti(2) - O(10)	1.997(4)
Ti(2) - O(10)	2.184(3)	Ti(2) - O(10)	2.234(3)
Ti(2) - O(11)	1.998(3)	Ti(2) - O(11)	1.997(4)

Table SI 2: Selected bond lengths (Å) of $La_5Ti_4O_{15}(OH)$ and $Er_5Ti_4O_{15}(OH)$.

Sm ₃ TiO ₅ (C	DH) ₃	Lu ₅ Ti ₂ O ₁₁	(OH)	Ce	$_{2}\mathrm{Ti}_{4}\mathrm{O}_{11}$
Sm(1)O	8	Lu(1)	\mathbf{D}_7	Ce(1)O ₈	
Sm(1)-O(1) x 2	2.404(3	Lu(1)-O(1) x 2	2.224(9)	Ce(1)-O(1	2.382(4)
Sm(1)–O(2) x	2.432(3	Lu(1)-O(1) x 2	2.324(9)	Ce(1)-O(2)	2.408(4)
Sm(1) - O(3) x	2.555(3	Lu(1)–O(2) x 2	2.335(10)	Ce(1) - O(3)	2.412(4)
Sm(1) - O(4)	2.432(5	Lu(1)-O(4)	2.292(12)	Ce(1) - O(3)	2.439(4)
Sm(1)-O(5)) 2.445(4	Lu(2)(D ₇	Ce(1) - O(4)	2.450(4)
Sm(2)O) 7	Lu(2)–O(1) x 2	2.257(9)	Ce(1)-O(5)	2.675(4)
Sm(2)-O(1)	2.375(3	Lu(2)–O(2) x 2	2.282(10)	Ce(1) - O(1)	2.725(4)
Sm(2)-O(1)) 2.444(3	Lu(2)–O(2) x 2	2.331(10)) Ti	i(1)O ₆
Sm(2)-O(2))	Lu(2)-O(4)	2.338(12)	Ti(1)-O(1)	1.961(4)
Sm(2)-O(2))	Lu(3A)	O_6	Ti(1)-O(2)	2.039(4)
Sm(2)–O(3))	Lu(3A)–O(2) x	2.14(6)	Ti(1)-O(4)	1.879(4)
Sm(2)-O(3))	Lu(3A) - O(2) x	2.41(7)	Ti(1)-O(4)	1.932(4)
Sm(2)-O(5))	Lu(3A) - O(3) x	2.238(15)	Ti(1)-O(5)	1.928(4)
Ti(1) O ,		2 Lu(3R)	0,	$T_{i}(1) - O(6)$	2 139(3)
$Ti(1) - O(1) \ge 2$	1.944(3	Lu(3A)-O(2) x	2.15(6)	Ti	$i(2)O_6$
Ti(1)-O(2) x 2	1.925(3	Lu(3A) - O(2) x	2.40(7)	Ti(2)-O(1)	1.918(4)
Ti(1)-O(4))	Lu(3A) - O(3) x	2.236(14)	Ti(2)-O(2)	1.750(4)
)	2 Lu(4)() ,	$T_{i}(2) - O(3)$	2.021(4)
		$Lu(4) - O(2) \ge 4$	2.239(10)	Ti(2) = O(5)	2.385(4)
		$Lu(4) = O(2) \times 2$	2.143(11)	Ti(2) - O(5)	2.068(4)
		Ti(1)	\mathbf{D}_{6}	Ti(2) - O(6)	
		$Ti(1) - O(1) \ge 2$	1.922(8)	() -(-)	
		$Ti(1) - O(3) \ge 2$	1.904(8)		
		$Ti(1) - O(4) \ge 2$	2.047(8)		

Table SI 3: Selected bond lengths (Å) of $Sm_3TiO_5(OH)_3$, $Lu_5Ti_2O_{11}(OH)$, and $Ce_2Ti_4O_{11}$.

S10

La ₅ Ti ₄ O ₁₅ (OH)		Er ₅ Ti ₄ O ₁₅ (OH)
La(1)O ₈		Er(1)O ₈	
La(1)–O(1) x 2	0.578	Er(1) = O(1) x	0.616
La(1)–O(4) x 2	0.688	Er(1) = O(4) x	0.544
La(1)–O(5) x 2	0.824	Er(1) = O(5) x	0.746
La(1)-O(6)	0.394	Er(1) - O(6)	0.435
La(1) - O(7)	0.327	Er(1) - O(7)	0.384
$\Sigma La(1)$	2.811	ΣEr(1)	2.734
$La(2)O_7$		Er(2)O ₇	
La(2)–O(2) x 2	1.204	Er(2)–O(2) x 2	1.174
La(2) - O(3)	0.344	Er(2) - O(3)	0.421
$L_{a}(2) = O(4) \times 2$	0.892	Er(2) - O(4) x	0 864
$\operatorname{Lu}(2) \operatorname{O}(1) \times 2$	0.072	2	0.001
La(2)–O(5) x 2	0.818	Er(2)–O(5) x 2	0.586
ΣLa(2)	3.256	$\Sigma Er(2)$	3.048
$La(3)O_{\bullet}$		Er(3)O.	
La(3)–O(2) x 2	1.184	Er(3) - O(2) x	1.028
La(3)–O(4) x 2	0.624	Er(3) - O(4) x	0.510
La(3)–O(5) x 2	0.620	Er(3) = O(5) x	0.544
La(3)–O(6) x 2	0.758	Er(3) = O(6) x	0.694
ΣI a(3)	3 186	Σ Σ Fr(3)	2 785
$\Delta La(3)$ $L_{2}(4)O$	5.100	$\frac{2\mathrm{EI}(5)}{\mathrm{E}_{\mathrm{P}}(4)\mathrm{O}}$	2.703
$La(4)-O(1) \ge C_8$	0.546	$Er(4)O_8$ Er(4)-O(1) x 2	0.584
$I_{a(4)} = O(7)$	0 382	Fr(4) = O(7)	0 4 2 9
$La(1) = O(8) \times 2$	0.502	Er(4) = O(8) x	0.129
Ld(4) O(6) X Z	0.000	2	0.000
La(4)-O(10) x 2	0.816	Er(4)–O(10) x	0.878
La(4) - O(11)	0.463	Er(4) = O(11)	0.514
$\Sigma La(4)$	2.865	$\Sigma Er(4)$	3.004
$L_{n}(5)$	2.000	$Er(5)O_{\circ}$	0.001
La(5)–O(8) x 2	1.068	Er(5)=O(8) x	1.002
La(5)-O(9)	0.377	_ Er(5)-O(9)	0.441
La(5)–O(10) x 2	0.466	Er(5) = O(10) x	1.006
La(5)-O(10) x 2	0.410	Er(5) = O(10) x	0.340

Table SI 4: Bond valence sum calculations of $La_5Ti_4O_{15}(OH)$ and $Er_5Ti_4O_{15}(OH)$.

La(5)–O(11)	0.399	Er(5)-O(11)	0.489
$\Sigma La(5)$	2.959	$\Sigma Er(5)$	3.278
Ti(1)O ₆		Ti(1)O ₆	
Ti(1)-O(1)	0.295	Ti(1) - O(1)	0.321
Ti(1)-O(3)	0.641	Ti(1)-O(3)	0.778
Ti(1)-O(4)	1.033	Ti(1)-O(4)	1.039
Ti(1)-O(5)	0.871	Ti(1)-O(5)	0.890
Ti(1)-O(7)	0.454	Ti(1)-O(7)	0.584
Ti(1)-O(8)	0.564	Ti(1)-O(8)	0.540
ΣTi(1)	3.858	ΣTi(1)	4.151
ΣTi(1) Ti(2)O ₆	3.858	ΣTi(1) Ti(2)O ₆	4.151
ΣTi(1) Ti(2)-O(1) Ti(2)O ₆	3.858 0.968	ΣTi(1) Ti(2)O₆ Ti(2)-O(1)	4.151 0.979
ΣTi(1) Ti(2)-O(1) Ti(2)-O(8)	3.858 0.968 0.753	Σ Ti(1) Ti(2) -O(1) Ti(2)-O(8)	4.151 0.979 0.753
Σ Ti(1) Ti(2) -O(1) Ti(2)-O(8) Ti(2)-O(9)	3.858 0.968 0.753 0.661	ΣTi(1) Ti(2)O₆ Ti(2)-O(1) Ti(2)-O(8) Ti(2)-O(9)	4.151 0.979 0.753 0.770
$\begin{array}{c} \Sigma Ti(1) \\ Ti(2) - O(1) \\ Ti(2) - O(8) \\ Ti(2) - O(9) \\ Ti(2) - O(10) \end{array}$	3.858 0.968 0.753 0.661 0.644	$\frac{\Sigma Ti(1)}{Ti(2)-O(1)}$ $Ti(2)-O(1)$ $Ti(2)-O(8)$ $Ti(2)-O(9)$ $Ti(2)-O(10)$	4.151 0.979 0.753 0.770 0.611
$\begin{array}{c} \Sigma Ti(1) \\ Ti(2) - O(1) \\ Ti(2) - O(8) \\ Ti(2) - O(9) \\ Ti(2) - O(10) \\ Ti(2) - O(10) \\ Ti(2) - O(10) \end{array}$	3.858 0.968 0.753 0.661 0.644 0.369	$\Sigma Ti(1) Ti(2)O_6$ $Ti(2)-O(1)$ $Ti(2)-O(8)$ $Ti(2)-O(9)$ $Ti(2)-O(10)$ $Ti(2)-O(10)$	4.151 0.979 0.753 0.770 0.611 0.322
$\begin{array}{c} \Sigma Ti(1) \\ Ti(2) - O(1) \\ Ti(2) - O(8) \\ Ti(2) - O(9) \\ Ti(2) - O(10) \\ Ti(2) - O(10) \\ Ti(2) - O(11) \end{array}$	3.858 0.968 0.753 0.661 0.644 0.369 0.610	$\Sigma Ti(1) Ti(2)O_6 Ti(2)-O(1) Ti(2)-O(8) Ti(2)-O(9) Ti(2)-O(10) Ti(2)-O(10) Ti(2)-O(11) $	4.151 0.979 0.753 0.770 0.611 0.322 0.611

Table SI 5: Bond valence sum calculations of $Sm_3TiO_5(OH)_3$, $Lu_5Ti_2O_{11}(OH)$ and $Ce_2Ti_4O_{11}$.

Sm ₃ TiO ₅ (OH	[) ₃	Lu ₅ Ti ₂ O ₁₁ (Ol	H)	Ce ₂ Ti ₄ O	11
Sm(1)O ₈		Lu(1)O ₇		Ce(1)O	7
Sm(1)-O(1)x	0.85	$Lu(1) - O(1) \ge 2$	1.002	Ce(1)-O(1)	0.536
2	4				
Sm(1)–O(2) x	0.79	Lu(1)-O(1) x 2	0.766	Ce(1) - O(2)	0.499
2	2				
Sm(1)-O(3) x	0.56	Lu(1)–O(2) x 2	0.748	Ce(1) - O(3)	0.494
2	2				
Sm(1) - O(4)	0.39	Lu(1) - O(4)	0.423	Ce(1) - O(3)	0.459
	6				
Sm(1) - O(5)	0.37	ΣLu(1)	2.939	Ce(1) - O(4)	0.446
	9				
$\Sigma Sm(1)$	2.98	Lu(2)O ₇		Ce(1) - O(5)	0.243
	1				
Sm(2)O ₇		$Lu(2) - O(1) \ge 2$	0.920	Ce(1) - O(1)	0.212
Sm(2) - O(1)	0.46	$Lu(2) - O(2) \ge 2$	0.872	ΣCe(1)	2.888
	0				
Sm(2) - O(1)	0.38	$Lu(2) - O(2) \ge 2$	0.752	Ti(1)O ₆	i
	2				
Sm(2)-O(2)	0.57	Lu(2) - O(4)	0.366	Ti(1) - O(1)	0.674
	0				
Sm(2)-O(2)	0.48	ΣLu(2)	2.911	Ti(1) - O(2)	0.546
	2				
Sm(2) - O(3)	0.50	Lu(3)O ₆		Ti(1)-O(4)	0.841
	7				
Sm(2) - O(3)	0.33	Lu(3)–O(2) x 2	1.242	Ti(1) - O(4)	0.729

	6				
Sm(2)–O(5)	0.30	Lu(3)–O(2) x 2	0.632	Ti(1)-O(5)	0.737
	2				
$\Sigma Sm(2)$	3.04	Lu(3)–O(3) x 2	0.982	Ti(1)-O(6)	0.417
	0				
Ti(1)O ₅		ΣLu(3)	2.856	ΣTi(1)	3.943
Ti(1) - O(1) x	1.40	$Lu(4)O_6$		Ti(2)O ₆	i
2	8				
Ti(1)–O(2) x	1.48	Lu(4)–O(2) x 4	1.948	Ti(2) - O(1)	
2	2				0.757
Ti(1)-O(4)	1.14	Lu(4)–O(2) x 2	1.230	Ti(2)–O(2)	0.881
	8				
ΣTi(1)	4.03	$\Sigma Lu(4)$	3.179	Ti(2)-O(3)	1.192
	7				
		Ti(1)O ₆		Ti(2)-O(5)	0.573
		$Ti(1) = O(1) \times 2$	1.518	Ti(2) - O(5)	0.214
		$Ti(1) - O(3) \ge 2$	1.556	Ti(2) - O(6)	0.505
		$Ti(1) - O(4) \ge 2$	1.086	ΣTi(2)	4.122
		ΣTi(1)	4.159	~ /	

Table SI 6: EDX of reported rare-earth titanates with experimental and expected RE:Ti ratios.

Structure	RE/Ti EDX ratio (%)	Experimental ratio	Expected ratio
La ₅ Ti ₄ O ₁₅ (OH)	22.1/23.5	0.94:1	1.25:1
Er ₅ Ti ₄ O ₁₅ (OH)	18.6/16.5	1.13:1	1.25:1

$Ce_2Ti_4O_{11}$	9.8/20.7	0.47:1	0.5:1
Sm ₃ TiO ₅ (OH) ₃	34.3/11.7	2.93:1	3.0:1
Tm ₅ Ti ₂ O ₁₁ (OH)	22.8/9.7	2.35:1	2.5:1
Yb ₅ Ti ₂ O ₁₁ (OH)	27/12	2.25:1	2.5:1
$Lu_5Ti_2O_{11}(OH)$	29.7/10.8	2.75:1	2.5:1

Table SI 7: Summary of *M*–*M* bond distances for $RE_5M_2O_{12}$ (*M* = Ru, Re, Mo) and $RE_5Ti_2O_{11}(OH)$ compounds.

Structure	M–M bond distance (short) (Å)	M–M bond distance (long) (Å)	Reference
$Pr_5Ru_2O_{12}$	2.8038	3.1450	53
$Eu_5Ru_2O_{12}$	2.780	3.091	53
$Gd_5Ru_2O_{12}$	2.774	3.084	53
$Tb_5Ru_2O_{12}$	2.7765	3.0649	53
$Eu_5Mo_2O_{12}$	2.523	3.265	69
$Tb_5Mo_2O_{12}$	2.510	3.243	69
$Dy_5Mo_2O_{12}$	2.505	3.233	69
$Ho_5Mo_2O_{12}$	2.499	3.219	69
$Y_5Mo_2O_{12}$	2.496	3.221	68
$Er_5Mo_2O_{12}$	2.494	3.219	69
$Y_5 Re_2 O_{12}$	2.4466	3.2138	54
$Tm_5Re_2O_{12}$	2.455	3.219	55
$Ho_5Re_2O_{12}$	2.436	3.201	56
$Lu_5Ti_2O_{11}(OH)$	2.799(8)	3.026(8)	this work

Figure SI 1: PXRD patterns of $La_5Ti_4O_{15}(OH)$. (a) Simulated powder pattern based on single crystal data of $La_5Ti_4O_{15}(OH)$; (b) Observed PXRD of $La_5Ti_4O_{15}(OH)$.

Figure SI 2: PXRD patterns of $Sm_3TiO_5(OH)_3$. (a) Simulated powder pattern based on single crystal structure data of $Sm_3TiO_5(OH)_3$; (b) Observed PXRD pattern for the $Sm_3TiO_5(OH)_3$ reaction and impurities of $Sm(OH)_3$ (00-006-0117) and SmO(OH) (00-013-0168) were observed (*).

Figure SI 3: PXRD patterns of $RE_5Ti_2O_{11}(OH)$ series of compounds. (a) Calculated PXRD pattern of $Lu_5Ti_2O_{11}(OH)$ based on single crystal data. Observed PXRD patterns of hydrothermally grown (b) $Lu_5Ti_2O_{11}(OH)$, (c) Yb₅Ti₂O₁₁(OH) and (d) Tm₅Ti₂O₁₁(OH).

Figure SI 4: PXRD patterns of $Ce_2Ti_4O_{11}$. (a) Calculated powder pattern of $Ce_2Ti_4O_{11}$ based on single crystal structure refinement; (b) Observed PXRD pattern of the $Ce_2Ti_4O_{11}$ reaction. Impurities of $Ce(OH)_3$ (00-054-1268) and Ti_2O_3 (01-071-0150) are highlighted using (*) and (\blacktriangle), respectively.

Figure SI 5: Single crystal Raman spectra of $Ce_2Ti_4O_{11}$, $La_5Ti_4O_{15}(OH)$, $Lu_5Ti_2O_{11}(OH)$ and $Sm_3TiO_5(OH)_3$ compounds. The bands in the range of 3600-3500 cm⁻¹ confirm the presence of hydroxide groups in $La_5Ti_4O_{15}(OH)$, $Lu_5Ti_2O_{11}(OH)$ and $Sm_3TiO_5(OH)_3$ compounds, while $Ce_2Ti_4O_{11}$ did not exhibit the characteristic OH stretching vibration. In these structures, the hydrogen atom location is significantly influenced by the sterics of the framework, and lattice stability from hydrogen bonding becomes a rather minor contribution. Thus, in these structures, we observe very weak hydrogen bonding, with vibrations within the region expected for a free OH⁻ group (3530-3622 cm⁻¹, based on the analysis of various minerals in E. Libowitzky, *Monatsch. Chem.* 1999, **130**, 1047-1059). Correspondingly, any O-H---O angles in these structures are generally bent (113.4° to 153.9°), also supporting the concept that the hydrogen atoms participate in minimal attractive hydrogen bonding.

Figure SI 6: Polyhedral view of the two dimensional Ti–O–Ti lattice of $La_5Ti_4O_{15}(OH)$, propagating infinitely in the *bc* plane.

S20

Figure SI 7: Section of the crystal structure of $La_5Ti_4O_{11}(OH)$ showing the connectivity between La–O–La lattice and Ti–O–Ti lattice along the *ac*-plane.

Figure SI 8: (a) Sm–O–Sm lattice of Sm₃TiO₅(OH)₃ along *ab*-plane with propagation of the Sm–O–Sm lattice along the *a* and *b* axes; (b) partial structure of Sm–O–Sm chains in the Sm₃TiO₅(OH)₃ structure showing the triangular units built from one Sm(1)O₈ and two Sm(2)O₇ units.

Figure SI 9: (a) The Sm–O–Ti–O–Sm lattice of $Sm_3TiO_5(OH)_3$; (b) Connectivity between $Sm(1)O_8$ and $Ti(1)O_5$ units; (c) Connectivity between $Sm(2)O_7$ and $Ti(1)O_5$ units.