Supporting Information:

# A new approach to fabricate the Mn(II)-based magnetic refrigerant through incorporation of diamagnetic {LiO<sub>4</sub>} spacer

Jia-Wei Wu, <sup>a,b</sup> Xue Wang,<sup>c</sup> Chong-Bin Tian,\*<sup>a</sup> Shao-Wu Du\*<sup>a</sup>

<sup>a</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, P. R. China. E-mail: tianchongbin@fjirsm.ac.cn; swdu@fjirsm.ac.cn.

<sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

<sup>c</sup> Yantai Branched Center of Shandong Technology Transfer Center, Chinese Academy of Sciences,

Shandong, Yantai 264000, P. R. China.

# Contents

# **1. Experimental Section**

- 1.1 Materials and Physical Measurements
- 1.2 Synthesis of the Compound
- **1.3** Crystal Structure Analysis

# 2. Results and Discussion

- 2.1 IR Spectroscopic Analysis
- 2.2 Magnetic Susceptibility Analysis

# 3. Tables and Figures

 Table S1. Crystallographic data for 1.

Table S2. Selected bond lengths (Å) and angles (°) for 1.

**Table S3.** The  $-\Delta S_m$  of **1** and 3d-based compounds.

Figure S1. View of the  $-Mn-Li_2-Mn-Li_2-$  chain in 1.

Figure S2. View of the 6-connected topological network of 1.

Figure S3. The PXRD of compound 1.

Figure S4. TG curve of compound 1.

Figure S5. The IR spectrum of compound 1.

#### **1. Experiment Section**

#### **1.1 Materials and Physical Measurements**

All the materials were purchased from the commercial sources and used without any further purification. Thermogravimetric (TG) analysis was performed using a GA/ NETZSCH STA449C instrument heated from room temperature to 800°C. Elemental analyses (C, H and N) were carried out with a Vario EL III analyzer. The IR spectrum of **1** was measured on Perkin-Elmer FT-IR spectrometer with KBr pellets in the range 4000–500 cm<sup>-1</sup>. The X-ray powder diffraction (XPRD) spectrum was collected using Miniflex II (Cu-K $\alpha$  radiation:  $\lambda = 1.54056$  Å) in the range of 5° < 2 $\theta$  < 60°. The magnetic susceptibility was measured with a Quantum Design PPMS–9T system. Diamagnetic corrections were estimated by using Pascal's constants and background corrections by experimental measurement on sample holders.

#### 1.2 Synthesis of the Compound

A mixture of Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O (0.25 mmol, 61 mg), isophthalic acid (H<sub>2</sub>ip, 0.50 mmol, 84 mg) and LiOH (0.5 mmol, 12 mg) was kept in a 20 mL of Teflon-lined stainless steel vessel with 6 mL isopropanol and 8 drops of glacial acetic acid were added. After stirred for about 10 minutes, the mixture was heated to 120°C. After being maintained for 72 h, the reaction vessel was cooled to room temperature in another 72 h. Colorless rod-like crystal of **1** were obtained. Yield: 92.0 mg (85% based on Mn). Anal. Calcd for  $C_{16}H_{12}Li_2MnO_{10}$ : C 44.33, H 2.77; found: C 44.18, H 2.86. IR (KBr, cm<sup>-1</sup>): 3465 m, 1618 vs, 1553 vs, 1445 m, 1400 vs, 1268 vs, 1170 vs, 1075 s, 1020 vs, 925 vs, 838 s, 733 vs, 565 s, 519 vs.

## **1.3 Crystal Structure Analysis**

X-ray single-crystal diffraction data were collected on Rigaku 724 CCD area-detector Diffractometer with a graphite monochromator utilizing Mo K $\alpha$  radiation ( $\lambda$  = 0.71073 Å). CrystalClear software was used for data reduction and empirical absorption correction. The structure was solved by direct methods using SHELXS-97<sup>1</sup> and refined by full-matrix least-squares on  $F^2$  using *SHELX-2016* program<sup>2</sup>. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms bonded to carbon were generated geometrically (C–H 0.97 or 0.93 Å) and U(H) values set as 1.2 times Ueq(C). A summary of crystal data and structure refinements of **1** is provided in Table S1. Selected bond lengths and angles are given in Table S2.

## 2. Results and Discussion.

#### 2.1 IR Spectroscopic Analysis

In the IR spectrum of **1** (Fig. S5, ESI<sup>†</sup>), the peak observed at 3467 cm<sup>-1</sup> suggests the presence of water molecules. On the other hand, the presence of carboxylate is proved by three obvious signals at about 1622, 1558, and 1398 cm<sup>-1</sup>. The strong bands at 750 cm<sup>-1</sup> indicate the meta-substitution of carboxyl groups in the benzene ring of the H<sub>2</sub>ip ligand.

## 2.2 Magnetic Susceptibility Analysis:

The analysis of the magnetic data for 1D regular Mn(II) chain was performed based on the Hamiltonian  $H = -J\Sigma S_i S_{i+1}$  (*J* stands for the exchange constant between the adjacent Mn(II) ions and  $S_i$  are the classical spin vectors), and the magnetic susceptibility can be written as  $\chi_m = [Ng^2\beta^2S(S+1)/3KT][(1 + (coth(JS(S+1)/KT) - KT/JS(S+1)))/(1 - (coth(JS(S+1)/KT) - KT/JS(S+1)))].$ 

## 3. Tables and Figures.

 Table S1. Crystallographic data for 1.

|                                                                                                                                                                   | 1                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| formula                                                                                                                                                           | $C_{16}H_{12}MnLi_2O10$                                        |
| formula mass                                                                                                                                                      | 433.08                                                         |
| crystal system                                                                                                                                                    | Monoclinic                                                     |
| space group                                                                                                                                                       | <i>C2/c</i>                                                    |
| $a/{ m \AA}$                                                                                                                                                      | 16.390(6)                                                      |
| $b/{ m \AA}$                                                                                                                                                      | 10.753(4)                                                      |
| $c/{ m \AA}$                                                                                                                                                      | 10.349(4)                                                      |
| lpha/°                                                                                                                                                            | 90.00                                                          |
| $eta\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                     | 111.528(5)                                                     |
| 7/°                                                                                                                                                               | 90.00                                                          |
| $V/Å^3$                                                                                                                                                           | 1696.8(11)                                                     |
| Z                                                                                                                                                                 | 4                                                              |
| $D_{calc}/g \ cm^{-3}$                                                                                                                                            | 1.695                                                          |
| $\mu/mm^{-1}$                                                                                                                                                     | 4.943                                                          |
| F(000)                                                                                                                                                            | 876.0                                                          |
| Parameters                                                                                                                                                        | 126                                                            |
| $R_1^a$ , $wR_2^b$ [I>2 $\sigma$ (I)]                                                                                                                             | 0.0348/0.0840                                                  |
| $R_1^a, wR_2^b$ [all data]                                                                                                                                        | 0.0392/0.0866                                                  |
| GOF on $F^2$                                                                                                                                                      | 1.039                                                          |
| $\mathbf{a}\mathbf{D} = \mathbf{\nabla} \  \mathbf{E} \  = \  \mathbf{E} \  / \mathbf{\nabla} \  \mathbf{E} \ $ house $\mathbf{E} = [\mathbf{\nabla} \mathbf{e}]$ | $(E_{2}^{2} - E_{2}^{2})^{2} / \sum_{i} (E_{2}^{2})^{2}   0.5$ |

 ${}^{\mathbf{a}}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, \ {}^{\mathbf{b}}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{0.5}.$ 

Table S2. Selected bond lengths (Å) and angles (°) for 1.

| Mn1-O3B      | 2.2167(17) | Mn1-O3C    | 2.2167     |
|--------------|------------|------------|------------|
| Mn1O1        | 2.2361(14) | Mn1-O1A    | 2.2361(14) |
| Mn1-O2       | 2.4064(15) | Mn1-O2A    | 2.4064(15) |
| Li1-O2       | 1.923(4)   | Li1-O3E    | 1.957(4)   |
| Li1–O1F      | 1.959(4)   | Li1-O5     | 1.977(4)   |
| Mn1-O1       | 2.2361(14) | Mn1-O1A    | 2.2361(14) |
| Mn1-O2       | 2.4064(15) | Mn1–O2A    | 2.4064(15) |
| Li1D-O1-Mn1  | 95.77(12)  | Li1-O2-Mn1 | 118.46(13) |
| Li1H-O3-Mn1G | 96.45(13)  |            |            |

Symmetry codes: (A) 1 - x, +y, -1/2 - z; (B) 1/2 - x, -1/2 + y, -1/2 - z; (C) 1/2 + x, -1/2 + y, +z; (D) +x, -y, -1/2 + z; (E) 1/2 + x, 1/2 - y, 1/2 + z; (F) +x, -y, 1/2 + z; (G) -1/2 + x, 1/2 - y, -1/2 + z; (H) -1/2 + x, 1/2 - y, -1/2 + z;

| complexes                                                                                                             | $-\Delta S_{m}(J \text{ kg}^{-1} \text{ K}^{-1})$ | T(K) | $\Delta H(T)$ | Ref    |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------|---------------|--------|
| $\frac{[Mn^{II}(g c)_2(H_2O)_2]}{[Mn^{II}(g c)_2(H_2O)_2]}$                                                           | <u>60 3</u>                                       | 1.8  | 7             | 3      |
| $[NH_2CH_2][CrMn(HCOO)_2]$                                                                                            | 48.2                                              | 2    | ,<br>7        | 4      |
| $[CH_{2}NH_{2}CH_{2}][CrMn(HCOO)_{6}]$                                                                                | 43.93                                             | 2    | ,<br>7        | 5      |
| $[Mn(Me-in)(DMF)]_{n}$                                                                                                | 42.4                                              | 2    | 8             | 6      |
| 1                                                                                                                     | 30.4                                              | 2    | 8             | This   |
| -                                                                                                                     |                                                   | _    | -             | work   |
| $[Fe_2(L)_2](BF_4)_2 \cdot 2(H_2O)$                                                                                   | 27.7                                              | 3    | 7             | 6      |
| $[Fe_2(L)_2](Cl)_2 \cdot 2(CH_3OH)$                                                                                   | 26.5                                              | 3    | 7             | 6      |
| ·4(H <sub>2</sub> O)                                                                                                  |                                                   |      |               |        |
| $[Mn^{III}_{6}Mn^{II}_{8}(OH)_{2}(Hpeol)_{4}]$                                                                        | 25                                                | 3.8  | 7             | 7      |
| $(H_2 peol)_6 I_4 (EtOH)_6] I_4$                                                                                      |                                                   |      |               |        |
| $[Fe_2(L)_2](NO_3)_2 \cdot 3(CH_3OH)$                                                                                 | 24.1                                              | 3    | 7             | 6      |
| 2(H <sub>2</sub> O)                                                                                                   |                                                   |      |               |        |
| $[Fe_2(L)_2](ClO_4)(Cl) \cdot 4(CH_3OH)$                                                                              | 22.9                                              | 3    | 7             | 6      |
| 2(H <sub>2</sub> O)                                                                                                   |                                                   |      |               |        |
| $Fe^{II}_{14}O_{6}(ta)_{6}(OMe)_{18}Cl_{6}$                                                                           | 20.3                                              | 6    | 7             | 8      |
| $[Mn^{II}_{4}(N_{3})_{7,3}Cl_{0,7}(dafo)_{4}]$                                                                        | 19.3                                              | 4    | 5             | 9      |
| $[Mn^{II}(bipy)_3]_{1.5}[Mn^{II}_{24}Mn^{IV}_8]$                                                                      | 18.2                                              | 1.6  | 7             | 10     |
| $(\text{thme})_{16}(\text{bipy})_{24}(N_3)_{12}(OAc)_{12}]$                                                           |                                                   |      |               |        |
| $(ClO_4)_{11}$                                                                                                        |                                                   |      |               |        |
| $Fe^{III}_{14}O_6(bta)_6(OMe)_{18}Cl_6$                                                                               | 17.6                                              | 6    | 7             | 11, 12 |
| $[Mn^{III}_{6}Mn^{II}_{8}(OH)_{2}(Hpeol)_{4}]$                                                                        | 17.0                                              | 3.8  | 7             | 7      |
| (H <sub>2</sub> peol) <sub>6</sub> I <sub>4</sub> (EtOH) <sub>6</sub> ]I <sub>4</sub> ·12EtOH                         |                                                   |      |               |        |
| $Fe^{III}(acetate)_3[9-MC_{FeN(shi)}-3]$                                                                              | 15.4                                              | 3    | 7             | 13     |
| (MeOH) <sub>3</sub> ·MeOH·7H <sub>2</sub> O                                                                           |                                                   |      |               |        |
| ${Na_2Mn^{II}(SO_4)_3(OH)_3}_n$                                                                                       | 14.4                                              | 13.5 | 7             | 14     |
| [Mn <sup>II</sup> <sub>12</sub> O <sub>12</sub> (CH <sub>3</sub> COO) <sub>16</sub> (H <sub>2</sub> O) <sub>4</sub> ] | 13.8                                              | 13.8 | 5             | 15     |
| ·2CH <sub>3</sub> COOH.4H <sub>2</sub> O                                                                              |                                                   |      |               |        |
| $[Mn^{III}_{11}Mn^{II}_{6}O_8Cl_4(dmp)_{10}]$                                                                         | 13.3                                              | 5.2  | 9             | 16     |
| (OAc) <sub>2.66</sub> Cl <sub>2.34</sub> (py) <sub>3</sub> (MeCN) <sub>2</sub> ]                                      |                                                   |      |               |        |
| ·7MeCN                                                                                                                |                                                   |      |               |        |
| $\{[Co^{II}_{5}(Me-ip)_{4}(Me-Hip)_{2}$                                                                               | 13.2                                              | 4.0  | 8             | 17     |
| $(H_2O)_4].6H_2O\}n$                                                                                                  |                                                   |      |               |        |
| [Mn <sup>III</sup> <sub>6</sub> Mn <sup>II</sup> <sub>4</sub> (OH) <sub>6</sub> (amp) <sub>4</sub>                    | 13.0                                              | 2.2  | 7             | 9, 18  |
| (ampH) <sub>4</sub> I <sub>4</sub> (EtOH) <sub>4</sub> ] I <sub>4</sub> ·12EtOH                                       |                                                   |      |               |        |
| $[Mn^{III}_{6}Mn^{II}_{4}O_4(mptH)_6(N_3)_3Br_2]$                                                                     | 10.3                                              | 2.6  | 9             | 16     |
| $(N_3)_{0.7}Br_{0.3}$ ·3MeCN·2MeOH                                                                                    |                                                   |      |               |        |
| $[Na_2Mn^{III}_{11}Mn^{II}_4O_8(hmpH)_{10}]$                                                                          | 9.5                                               | 6    | 7             | 18     |
| $(OAc)_2(H_2O)_2(MeO)_{1.5}(N_3)_{2.5}]$                                                                              |                                                   |      |               |        |
| $(OAc)_{10}H_2O \cdot 2MeOH$                                                                                          |                                                   |      |               |        |
| $[Mn^{III}{}_{12}Mn^{II}{}_7O_8(hmpH){}_{12}(N_3){}_3$                                                                | 9.0                                               | 9    | 7             | 18     |
| (MeO) <sub>5.5</sub> (MeOH) <sub>3.5</sub> (H <sub>2</sub> O) <sub>1.5</sub>                                          |                                                   |      |               |        |

**Table S3.** The  $-\Delta S_m$  of **1** and 3d–based compounds.

| $(OH)_{0.5}](OAc) \cdot 10H_2O$                                                                                         |      |      |   |    |
|-------------------------------------------------------------------------------------------------------------------------|------|------|---|----|
| $[Mn^{III}_{12}Mn^{II}_{7}O_8(bhmmp)_{12}$                                                                              | 8.9  | 4.2  | 7 | 18 |
| (MeCN) <sub>6</sub> ]Cl <sub>2</sub> ·10MeOH.MeCN                                                                       |      |      |   |    |
| [Fe <sup>III</sup> <sub>17</sub> O <sub>16</sub> (OH) <sub>12</sub> (py) <sub>12</sub> Br <sub>4</sub> ]Br <sub>3</sub> | 8.9  | 2.7  | 7 | 19 |
| Fe <sup>III</sup> (benzoate) <sub>3</sub> [9-MC <sub>FeN(shi)</sub> -3]                                                 | 7.4  | 7    | 7 | 13 |
| (MeOH) <sub>3</sub> ·MeOH·4H <sub>2</sub> O                                                                             |      |      |   |    |
| $[Mn^{II}(glc)_2]_n$                                                                                                    | 6.9  | 7.0  | 7 | 3  |
| NiCl <sub>2</sub> (bipy)                                                                                                | 6    | 7    | 7 | 20 |
| $[Mn^{III}_{8}Mn^{IV}_{4}O_{12}(2-ClPhCO_{2})_{16}]$                                                                    | 4.3  | ~2.5 | 3 | 21 |
| $(H_2O)_4]CH_2Cl_2\cdot 5H_2O$                                                                                          |      |      |   |    |
| ${Co^{II}_4(OH)_2(SBA)_3}_n$                                                                                            | 2.4  | 10   | 5 | 22 |
| $[Mn^{II}_{3}(OH)_{2}(tdc)_{2}]_{n}$                                                                                    | <1.7 | 25   | 5 | 23 |

Abbrevation: glc = glycolates; H<sub>2</sub>Me-ip = 5-methylisophthalic acid; H<sub>2</sub>L = N'1,N'4bis(2-hydroxybenzylidene)succinohydrazide; H<sub>2</sub>peol = pentaerythritol; taH = 1,2,3triazole; dafo = 4,5-diazafluoren-9-one; bipy = bipyridyl; thme = methyl-hexane; bta = benzotriazole; H<sub>2</sub>dmp = 2,2-dimethyl-1,3-propanediol; py = pyridine; H<sub>2</sub>amp = 1,3propanediol; H<sub>3</sub>mpt = 3-methylpentan-1,3,5-triol; H<sub>3</sub>hmp = 2,6-bis(hydroxymethyl)-4-methylpheno; bhmmp = 2,6-bis(hydroxymethyl)-4-methylphenol; SBA = sebacic acid; tdc = thiophene-2,5-dicarboxylic acid.



Figure S1. View of the  $-Mn-Li_2-Mn-Li_2-$  chain in 1.



Figure S2. View of the 6-connected topological network of 1.



Figure S3. The PXRD of 1.



Figure S4. The TG curve of compound 1.



Figure S5. The IR spectrum of compound 1.

## **References:**

- 1. G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Solution, University of Gottingen, Gottingen, Germany, 1997.
- 2. G. M. Sheldrick, Acta Crystallogr., Sect. C., 2015, 71, 3.
- 3. Y.-C. Chen, F.-S. Guo, J.-L. Liu, J.-D. Leng, P. Vrabel, M. Orendac, J. Prokleska, V. Sechovsky and M.-L. Tong, *Chem. Eur. J.*, 2014, **20**, 3029.
- 4. J.-P. Zhao, S.-D. Han, X. Jiang, S.-J. Liu, R. Zhao, Z. Chang and X.-H. Bu, *Chem. Commun.*, 2015, **51**, 8288.
- 5. C. B. Tian, R. P. Chen, C. He, W. J. Li, Q. Wei, X. D. Zhang and S. W. Du, *Chem. Commun.*, 2014, **50**, 1915.
- 6. A. Adhikary, H. S. Jena and S. Konar, *Dalton Trans.*, 2015, 44, 15531.
- 7. M. Manoli, A. Collins, S. Parsons, A. Candini, M. Evangelisti and E. K. Brechin, J. Am. Chem. Soc., 2008, 130, 11129.
- R. Shaw, R. H. Laye, L. F. Jones, D. M. Low, C. Talbot-Eeckelaers, Q. Wei, C. J. Milios, S. Teat, M. Helliwell, J. Raftery, M. Evangelisti, M. Affronte, D. Collison, E. K. Brechin and E. J. L. McInnes, *Inorg. Chem.*, 2007, 46, 4968.
- 9. J.-P. Zhao, R. Zhao, Q. Yang, B.-W. Hu, F.-C. Liu and X.-H. Bu, *Dalton Trans.*, 2013, **42**, 14509.
- 10. M. Evangelisti, A. Candini, M. Affronte, E. Pasca, L. J. de Jongh, R. T. W. Scott and E. K. Brechin, *Phys. Rev. B*, 2009, **79**, 104414.
- 11. M. Evangelisti, A. Candini, A. Ghirri, M. Affronte, E. K. Brechin and E. J. L. McInnes, *Appl. Phys. Lett.*, 2005, **87**, 072541.
- 12. M. Evangelisti, A. Candini, A. Ghirri, M. Affronte, S. Piligkos, E. K. Brechin and E. J. L. McInnes, *Polyhedron*, 2005, **24**, 2573.
- 13. C. Y. Chow, R. Guillot, E. Riviere, J. W. Kampf, T. Mallah and V. L. Pecoraro, *Inorg. Chem.*, 2016, **55**, 10238.
- 14. H.-C. Hu, C.-S. Cao, Y. Yang, P. Cheng and B. Zhao, J. Mater. Chem. C, 2015, **3**, 3494.
- 15. M. Balanda, R. Pelka, M. Fitta, L. Laskowski and M. Laskowska, *Rsc Advances*, 2016, **6**, 49179.
- S. Nayak, M. Evangelisti, A. K. Powell and J. Reedijk, *Chem. Eur. J.*, 2010, 16, 12865.
- 17. C. Tian, Z. Lin and S. Du, Cryst. Growth. Des., 2013, 13, 3746.
- 18. J.-L. Liu, J.-D. Leng, Z. Lin and M.-L. Tong, *Chem.-Asian J.*, 2011, 6, 1007.
- 19. I. A. Gass, E. K. Brechin and M. Evangelisti, *Polyhedron*, 2013, **52**, 1177.
- 20. K. Raczova, E. Cizmar and A. Feher, Acta Phys. Pol. A, 2017, 131, 922.
- 21. F. Torres, X. Bohigas, J. M. Hernandez and J. Tejada, *J. Phys.-Condens. Mat.*, 2003, **15**, L119.
- 22. R. Sibille, T. Mazet, B. Malaman, T. Gaudisson and M. Francois, *Inorg. Chem.*, 2012, **51**, 2885.
- 23. R. Sibille, T. Mazet, E. Elkaim, B. Malaman and M. Francois, *Inorg. Chem.*, 2013, **52**, 608.