Supporting Information

Rare earth indates (RE: La-Yb): Influence of synthesis route and heat treatment on crystal structure

Rakesh Shukla^{*a*}, Vinita Grover ^{*a,e**}, Kancharlapalli Srinivasu^{*b*}, Barnita Paul^{*c*}, Anushree Roy^{*c*}, Ruma Gupta^{*d*} and Avesh Kumar Tyagi^{*a,e**}

^aChemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India

^bTheoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai-400085, India

^cDepartment of Physics, Indian Institute of Technology, Kharagpur, 721302, India

^dFuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India ^eHomi Bhabha National Institute, Mumbai- 400094, India

 $\begin{array}{c} 1.0 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ 200 \\ \end{array} \begin{pmatrix} (a) \\ (a) \\ (b) \\ (b) \\ (b) \\ (b) \\ (b) \\ (c) \\ ($

Figure S1: DR-UV plot for (a) hexagonal SmInO₃ and (b) orthorhombic SmInO₃.

Figure S2: Spin polarised total and projected density of states (DOS) of (a) Hexagonal and (b) orthorhombic SmInO₃ calculated using HSE06 method.

Figure S3. Variation of energy with volume fitted to Birh-Murnaghan equation of state for (a) Orthorhombic and (b) Hexagonal SmInO₃.

Figure S4. Variation of free energy with respect to volume at different temperatures from 0 K to 2000 K for (a) Orthorhombic and (b) Hexagonal SmInO₃.