Electronic Supporting Information

Formate Complexes of Titanium(IV) Supported by a Triamido-Amine Ligand

Albert Paparo, Franziska D. van Krüchten, Thomas P. Spaniol, and Jun Okuda*

Contents

Genera	ll considerations2
Synthe	eses and spectra3
1.	[(OCHO)Ti(N ₃ N)] (3)
2.	{ <i>K</i> [<i>O</i> Ti(<i>N</i> ₃ <i>N</i>)]} _{<i>n</i>} (4)
3.	$[(Et_2O)Ti(N_3N)][B(3,5-Cl_2C_6H_3)_4] (6[B(3,5-Cl_2C_6H_3)_4] \cdot Et_2O) \dots 7$
4.	$[(Et_2O)Ti(N_3N)][B(C_6F_5)_4](6[B(C_6F_5)_4] \cdot Et_2O)9$
5.	$[(py)Ti(N_3N)][B(3,5-Cl_2C_6H_3)_4] (6[B(3,5-Cl_2C_6H_3)_4] \cdot py) \dots 12$
6.	$[(py)Ti(N_3N)][B(C_6F_5)_4]$ (6 $[B(C_6F_5)_4]$ ·py)
7.	$[(thf)Ti(N_3N)][B(3,5-Cl_2C_6H_3)_4] (6[B(3,5-Cl_2C_6H_3)_4] \cdot thf) \dots 18$
8.	$[(thf)Ti(N_3N)][B(C_6F_5)_4] (6[B(C_6F_5)_4] \cdot thf) \dots 20$
9.	[(dmap)Ti(N ₃ N)][B(3,5-Cl ₂ C ₆ H ₃) ₄](6[B(3,5-Cl ₂ C ₆ H ₃) ₄]·dmap)23
10.	[(dmap)Ti(N ₃ N)][B(C ₆ F ₅) ₄] (6[B(C ₆ F ₅) ₄]·dmap)25
11.	$[Ti\{N(CH_2CH_2NSiMe_3)_2(CH_2CH_2NSiMe_3(\mu - CO_2 - \eta O: \eta O'))\}]_2[B(3, 5 - Cl_2C_6H_3)_4]_2(7[B(3, 5 - Cl_2C_6H_3)_4]_2) \dots 28$
12.	$[Ti{N(CH_{2}CH_{2}NSiMe_{3})_{2}(CH_{2}CH_{2}NSiMe_{3}(\mu - CO_{2} - \eta O : \eta O'))}]_{2}[B(C_{6}F_{5})_{4}]_{2}(7[B(C_{6}F_{5})_{4}]_{2})29$
13.	$[(py)Ti\{N(CH_2CH_2NSiMe_3)_2(CH_2CH_2NSiMe_3(CO_2-\kappa^2O,O'))\}](8[B(C_6F_5)_4]\cdot py)32$
14.	$[Ti\{N(CH_2CH_2NSiMe_3)_2(CH_2CH_2NSiMe_3(\mu-CS_2-\eta S:\eta S'))\}]_2[B(3,5-Cl_2C_6H_3)_4]_2(9[B(3,5-Cl_2C_6H_3)_4]_2)\dots 36]$
15.	$[(Ti(N_3N))_2(\mu - OCHO - \eta O: \eta O')][B(3, 5 - Cl_2C_6H_3)_4](10[B(3, 5 - Cl_2C_6H_3)_4])40$
16.	$[(Ti(N_3N))_2(\mu - OCHO - \eta O: \eta O')][B(C_6F_5)_4] (10[B(C_6F_5)_4])42$
X-ray	crystallography
Refere	nces

General considerations

All experiments were performed using standard Schlenk and glovebox techniques under argon atmosphere. THF, *n*-pentane and diethyl ether were dried using an MBraun SPS-800 solvent purification system. THF was subsequently distilled from LiAlH₄. THF- d_8 and benzene- d_6 were distilled from sodium/benzophenone ketyl. Deuterated and non-deuterated 1.2-dichlorobenzene and chlorobenzene were distilled Tris(2-aminoethyl)amine, Me₃SiCl, CaH₂. ⁿBuLi in hexane solution, from [HNMe₂Ph][B(C₆F₅)₄], and NaOCHO were purchased from Sigma Aldrich and used without purification; the solids were heated at 60 °C under reduced pressure for 6 h. CS_2 was distilled from CaH_2 . CO_2 was passed through a column packed with P_2O_5 . $[CITi(N_3N)]$ (1),¹ [^{*n*}BuTi(N₃N)] (2),^{1a} [Ph₃C][B(3,5-Cl₂C₆H₃)₄],² and [HNEt₃][OCHO]³ were prepared as reported. ¹H, ¹³C{¹H}, ¹¹B{¹H}, and ¹⁹F NMR spectra were recorded on Bruker Avance III 400 or Bruker Avance III HD 400 spectrometers at 25 °C. NMR samples were prepared in J. Young NMR tubes sealed with Teflon screw caps. Chemical shifts for ¹H and ¹³C{¹H} NMR spectra were referenced internally to the residual solvent resonance and are reported in ppm relative to tetramethylsilane. If not otherwise stated, ¹³C{¹H} NMR resonances are singlets. Intensity data for all structures were collected with a Bruker SMART APEX CCD detector on a D8 goniometer (Mo Ka radiation $\lambda = 0.71073$ Å, graphite monochromator). Elemental analyses were carried out using a CHN-O-Rapid VarioEL from Heraeus. The low carbon content in some samples is ascribed to metal carbide or silicide formation during combustion.⁴ IR spectra were recorded on a Nicolet Avatar 360 E.S.P. spectrometer using KBr pellets.

Syntheses and spectra

1. [(OCHO)Ti(*N*₃*N*)] (3)

Figure S1. ¹H NMR spectrum of **3** in THF-*d*₈, *OC₄D₇H.

Figure S2. ¹³C{¹H} NMR spectrum of 3 in THF-*d*₈, *OC₄D₈.

Figure S3. IR spectrum of 3 in a KBr pellet.

2. {K[OTi(N₃N)]}_n (4)

Figure S4. ¹H NMR spectrum of 4 in THF-*d*₈, *OC₄D₇H, ***n*-pentane.

Figure S5. ¹³C{¹H} NMR spectrum of 4 in THF-*d*₈, *OC₄D₈, **n*-pentane.

Figure S6. IR spectrum of 4 in a KBr pellet.

Figure S7. Comparison of the ¹H NMR spectra of crude **4** and $[(Me_3SiO)Ti(N_3N)]$ (**5**) in THF-*d*₈, *OC₄D₇H, **THF.

3. $[(Et_2O)Ti(N_3N)][B(3,5-Cl_2C_6H_3)_4] (6[B(3,5-Cl_2C_6H_3)_4] \Box Et_2O)$

Figure S9. ¹³C{¹H} NMR spectrum of **6**[B(3,5-Cl₂C₆H₃)₄] \Box Et₂O in 1,2-dichlorobenzene-*d*₄, *C₆Cl₂D₄.

 $\textbf{Figure S10.} \ ^{11}\text{B}\{^{1}\text{H}\} \ \text{NMR spectrum of } \textbf{6}[\text{B}(3,5\text{-}\text{Cl}_2\text{C}_6\text{H}_3)_4] \square \ \text{Et}_2\text{O} \ \text{in 1,2-dichlorobenzene-}\textit{d}_4.$

Figure S11. Molecular structure of the Λ enantiomer of **5** in solid state drawn at the 50% probability level. Hydrogen atoms, counter anions and the Δ enantiomer are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ti1–N_{amide,avg} 1.908, Ti1–N4 2.330(6), Ti2–O1 2.103(5); O2-Ti2-N4 169.7(2).

4. $[(Et_2O)Ti(N_3N)][B(C_6F_5)_4] (6[B(C_6F_5)_4] \Box Et_2O)$

Figure S12. ¹H NMR spectrum of $6[B(C_6F_5)_4] \square Et_2O$ in 1,2-dichlorobenzene- d_4 , *C₆Cl₂D₃H.

Figure S15. ¹⁹F NMR spectrum of $6[B(C_6F_5)_4] \square Et_2O$ in 1,2-dichlorobenzene- d_4 .

Figure S16. VT NMR of $6[B(C_6F_5)_4] \square Et_2O$ in dichloromethane- d_2 from 0 to -50 °C. RED: bound Et_2O, GREEN: free Et_2O.

5. [(py)Ti(N₃N)][B(3,5-Cl₂C₆H₃)₄] (6[B(3,5-Cl₂C₆H₃)₄] [py)

Pyridine (8.2 µL, 102 µmol, 1.1 equiv.) was added to a solution of **6**[B(3,5-Cl₂C₆H₃)₄] \Box Et₂O (100 mg, 93 µmol) in chlorobenzene (5 mL). The reaction mixture was stirred for 1 h at room temperature. All volatiles were removed under reduced pressure and the residue was rinsed with *n*-pentane (3x 5 mL). The product was dried *in vacuo*, triturated with *n*-pentane (1 mL), and isolated as yellow powder (89 mg, 82 µmol, 88% based on **6**[B(3,5-Cl₂C₆H₃)₄] \Box Et₂O). Single crystals suitable for X-ray diffraction were grown at room temperature from a solution in 1,2-dichlorobenzene in an atmosphere of *n*-pentane. ¹H NMR (400 MHz, 1,2-dichlorobenzene-*d*₄): δ = 8.54 (d, 2H, ³J_{HH} = 4.9 Hz, *o*-py), 7.75 (tt, ³J_{HH} = 4.9 Hz, ⁴J_{HH} = 1.6 Hz, 1H, *p*-py), 7.44 (m, 8H, *o*-Ph), 7.40 (m, 2H, *m*-py), 6.94 (t, ⁴J_{HH} = 2.0 Hz, 4H, *o*-Ph), 3.76 (t, ³J_{HH} = 5.4 Hz, 6H, NCH₂), 2.97 (t, ³J_{HH} = 5.4 Hz, 6H, NCH₂), -0.10 (s, 27H, Si(CH₃)₃) ppm. ¹³C{¹H} NMR (101 MHz, 1,2-dichlorobenzene-*d*₄): δ = 165.4 (quart., ¹J_{BC} = 49.3 Hz, *ipso*-Ph), 150.0 (*o*-py), 143.4 (br. s, *p*-py), 133.5 (quart., ²J_{BC} = 4.0 Hz, *m*-Ph), 133.3 (*o*-Ph), 126.0 (*m*-py), 123.5 (Ph), 68.7 (NCH₂), 50.1 (NCH₂), 0.80 (Si(CH₃)₃). ¹¹B{¹H} NMR (128 MHz, 1,2-dichlorobenzene-*d*₄): δ = - 6.19 ppm. Anal. calcd. (found) for C₄₄H₅₆BCl₈N₅Si₃Ti (1081.50 g \Box mol⁻¹) in %: C 48.86 (#630,H 5.22 (5.51), N 6.48 (6.85).

Figure S17. ¹H NMR spectrum of **6**[B(3,5-Cl₂C₆H₃)₄] \Box py in 1,2-dichlorobenzene-*d*₄, *C₆Cl₂D₃H.

Figure S18. ¹³C{¹H} NMR spectrum of **6**[B(3,5-Cl₂C₆H₃)₄] \Box py in 1,2-dichlorobenzene-*d*₄, *C₆Cl₂D₃H₄.

Figure S19. ¹¹B{¹H} NMR spectrum of $6[B(3,5-Cl_2C_6H_3)_4]$ py in 1,2-dichlorobenzene- d_4 .

Figure S20. Molecular structure of $6[B(3,5-Cl_2C_6H_3)_4]$ py in the solid state drawn with displacement parameters at 50% probability. Hydrogen atoms and the counter anion are omitted for clarity. Selected interatomic distances (Å) and angles (°): Ti-N1 1.908(4), Ti-N2 1.906(4), Ti-N3 1.916(4), Ti-N4 2.281(4), Ti-N5 2.176(3), N4-Ti-N5 163.81.

6. $[(py)Ti(N_3N)][B(C_6F_5)_4] (6[B(C_6F_5)_4] \Box py)$

Pyridine (7.6 μL, 94 μmol, 1.1 equiv.) was added to a solution of **6**[B(C₆F₅)₄]□Et₂O (100 mg, 86 μmol) in chlorobenzene (5 mL). The reaction mixture was stirred for 1 h at room temperature. All volatiles were removed *in vacuo*. The residue was rinsed with *n*-pentane (3x 5 mL), dried *in vacuo*, triturated with *n*-pentane (1 mL), and isolated as yellow powder (91 mg, 78 μmol, 91% based on **6**[B(C₆F₅)₄]□Et₂O). ¹H NMR (400 MHz, 1,2-dichlorobenzene-*d*₄): δ = 8.53 (d, 2H, ³J_{HH} = 4.9 Hz, *o*-py), 7.78 (tt, ³J_{HH} = 4.9 Hz, ⁴J_{HH} = 1.6 Hz, 1H, *p*-py), 7.04 (m, 2H, *m*-py), 3.74 (t, ³J_{HH} = 5.3 Hz, 6H, NC*H*₂), 2.96 (t, ³J_{HH} = 5.3 Hz, 6H, NC*H*₂), -0.13 (s, 27H, Si(C*H*₃)₃). ¹³C{¹H} NMR (101 MHz, 1,2-dichlorobenzene-*d*₄): δ = 150.9 (*o*-py), 149.6 (d, ¹J_{CF} = 246 Hz, Ph), 144.2 (*p*-py), 139.6 (d, ¹J_{CF} = 240 Hz, Ph), 137.4 (d, ¹J_{CF} = 250 Hz, Ph) 126.8 (*m*-py), 69.5 (NCH₂), 50.8 (NCH₂), 1.53 (Si(CH₃)₃). ¹¹B{¹H} NMR (128 MHz, 1,2-dichlorobenzene-*d*₄): δ = -16.2 (*B*(C₆F₅)₄). ¹⁹F NMR (377 MHz, 1,2-dichlorobenzene-*d*₄): δ = -131.68 (br. t, *o*-*F*), -162.35 (t, ³J_{FF} = 20.5 Hz, *p*-*F*), -166.14 (br. s, *m*-*F*). Anal. calcd. (found) for C₄₄H₄₄BF₂₀N₅Si₃Ti (1165.77 g□mol⁻¹) in %: C 45.33 (43.01), H 3.80 (4.24), N 6.01 (5.32).

Figure S21. ¹H NMR spectrum of **6**[B(C₆F₅)₄] \Box py in 1,2-dichlorobenzene-*d*₄, *C₆Cl₂D₃H, **Et₂O.

Figure S22. ¹³C{¹H} NMR spectrum of $6[B(C_6F_5)_4]$ py in 1,2-dichlorobenzene- d_4 , *C₆Cl₂D₄.

Figure S23. ¹¹B{¹H} NMR spectrum of $6[B(C_6F_5)_4]$ py in 1,2-dichlorobenzene-d₄.

Figure S24. ¹⁹F NMR spectrum of $6[B(C_6F_5)_4]$ py in 1,2-dichlorobenzene- d_4 .

7. $[(thf)Ti(N_3N)][B(3,5-Cl_2C_6H_3)_4] (6[B(3,5-Cl_2C_6H_3)_4] \Box thf)$

Compound **6**[B(3,5-Cl₂C₆H₃)₄] \Box Et₂O (20 mg, 19 µmol) and THF (1.5 µL, 19 µmol) were combined in chlorobenzene (5 mL). The reaction mixture was stirred for 1 h at room temperature. All volatiles were then removed *in vacuo* and the crude product was rinsed with *n*-pentane (3× 5 mL). The product was dried *in vacuo*, triturated with *n*-pentane and isolated as yellow powder (18 mg, 17 µmol, 90% based on **6**[B(3,5-Cl₂C₆H₃)₄] \Box Et₂O). ¹H NMR (400 MHz, 1,2-dichlorobenzene-*d*₄): δ = 7.43 (m, 8H, *o*-Ph), 6.94 (t, ⁴*J*_{HH} = 2.0 Hz, 4H, *o*-Ph), 4.18 (m, 4H, thf), 3.64 (t, ³*J*_{HH} = 5.4 Hz, 6H, NC*H*₂), 2.93 (t, ³*J*_{HH} = 5.4 Hz, 6H, NC*H*₂), 1.89 (m, 4H, thf), 0.06 (s, 27H, Si(C*H*₃)₃). ¹³C{¹H} NMR (101 MHz, 1,2-dichlorobenzene-*d*₄): δ = 165.4 (quart., ¹*J*_{BC'} = 49.3 Hz, *ipso*-*C*), 133.5 (quart., ²*J*_{BC'} = 4.0 Hz, *m*-*C*), 133.4 (*o*-*C*), 123.5 (*p*-*C*), 77.79 (thf), 69.3 (NCH₂), 49.7 (NCH₂), 25.6 (thf), 1.1 (Si(CH₃)₃). ¹¹B{¹H} NMR (128 MHz, 1,2-dichlorobenzene-*d*₄): δ = -6.28 (*B*(3,5-Cl₂C₆H₃)₄). Anal. calcd. (found) for C₄₃H₅₉BCl₈N₄Si₃OTi (1074.50 g \Box mol⁻¹) in %: C 48.01 (45.55), H 5.53 (5.38), N 5.21 (5.27).

Figure S25. ¹H NMR spectrum of **6**[B(3,5-Cl₂C₆H₃)₄] \Box thf in 1,2-dichlorobenzene-*d*₄, *C₆Cl₂D₃H.

Figure S26. ¹³C{¹H} NMR spectrum of [6[B(3,5-Cl₂C₆H₃)₄] \Box thf in 1,2-dichlorobenzene-d₄, *C₆Cl₂D₄

Figure S27. ¹¹B{¹H} NMR spectrum of $6[B(3,5-Cl_2C_6H_3)_4]$ thf in 1,2-dichlorobenzene- d_4 .

8. $[(thf)Ti(N_3N)][B(C_6F_5)_4] (6[B(C_6F_5)_4] \Box thf)$

Compound **6**[B(C₆F₅)₄] \square Et₂O (20 mg, 17 µmol) was dissolved in chlorobenzene (5 mL) and THF (1.4 µL, 17 µmol) was added *via* microsyringe. The reaction mixture was stirred for 1 h at room temperature. All volatiles were removed under reduced pressure and the crude product was rinsed with *n*-pentane (3x 5 mL). The product was dried *in vacuo*, triturated with *n*-pentane (1 mL), and isolated as yellow powder (18 mg, 15 µmol, 91% based on **6**[B(C₆F₅)₄] \square Et₂O). ¹H NMR (400 MHz, 1,2-dichlorobenzene-*d*₄): δ = 4.19 (m, 4H, thf), 3.64 (t, ³*J*_{HH} = 5.4 Hz, 6H, NC*H*₂), 2.95 (t, ³*J*_{HH} = 5.3 Hz, 6H, NC*H*₂), 1.92 (m, 4H, thf), 0.06 (s, 27H, Si(C*H*₃)₃). ¹³C{¹H} NMR (101 MHz, 1,2-dichlorobenzene-*d*₄): δ = 149.2 (d, ¹*J*_{CF} = 242 Hz, Ph), 138.5 (d, ¹*J*_{CF} = 245 Hz, Ph), 136.8 (d, ¹*J*_{CF} = 241 Hz, Ph), 77.8 (thf), 69.3 (NCH₂), 49.7 (NCH₂), 25.5 (thf), 0.96 (Si(*C*H₃)₃). ¹¹B{¹H} NMR (128 MHz, 1,2-dichlorobenzene-*d*₄): δ = -16.19 (*B*(C₆F₅)₄). ¹⁹F NMR (377 MHz, 1,2-dichlorobenzene-*d*₄): δ = -131.4 (br. t, *o*-*F*), -162.1 (t, ³*J*_{FF} = 20.7 Hz, *p*-*F*), -165.6 (br. s, *m*-*F*). Anal. calcd. (found) for C₄₃H₄₇BF₂₀N₄OSi₃Ti (1158.78 g \square mol⁻¹) in %: C 44.57 (42.39), H 4.09 (4.33), N 4.84 (4.92).

Figure S28. ¹H NMR spectrum of $6[B(C_6F_5)_4]$ thf in 1,2-dichlorobenzene- d_4 , *C₆Cl₂D₃H, ***n*-pentane.

Figure S30. ¹¹B{¹H} NMR spectrum of $6[B(C_6F_5)_4]$ thf in 1,2-dichlorobenzene- d_4 .

Figure S31. ¹⁹F NMR spectrum of $6[B(C_6F_5)_4]$ thf in 1,2-dichlorobenzene- d_4 .

9. $[(dmap)Ti(N_3N)][B(3,5-Cl_2C_6H_3)_4] (6[B(3,5-Cl_2C_6H_3)_4] \Box dmap)$

Compound **6**[B(3,5-Cl₂C₆H₃)₄] \Box Et₂O (20 mg, 19 mmol) and DMAP (4.3 mg, 38 µmol, 2 eq.i) were combined in chlorobenzene (5 mL). The reaction mixture was stirred for 1 h at room temperature. All volatiles were removed under reduced pressure and the crude product was rinsed with *n*-pentane (3x 5 mL). The product was dried *in vacuo*, triturated with *n*-pentane (1 mL), and isolated as yellow powder (18 mg, 16 µmol, 86% based on **6**[B(3,5-Cl₂C₆H₃)₄] \Box Et₂O). ¹H NMR (400 MHz, 1,2-dichlorobenzene-*d*₄): δ = 8.14 (d, 2H, ³*J*_{HH} = 7.4 Hz, *m*-dmap), 7.44 (m, 8H, *o*-Ph), 6.94 (t, ⁴*J*_{HH} = 2.0 Hz, 4H, *p*-Ph), 6.39 (d, ³*J*_{HH} = 7.5 Hz, *o*-dmap), 3.70 (t, ³*J*_{HH} = 5.2 Hz, 6H, NC*H*₂), 2.63 (s, 6H, N(C*H*₃)₂), 0.00 (s, 27H, Si(C*H*₃)₃). ¹³C{¹H} NMR (101 MHz, 1,2-dichlorobenzene-*d*₄): δ = 165.4 (quart., ¹*J*_{BC} = 49.4 Hz, *ipso*-C), 155.8 (*ipso*-dmap), 67.2 (NCH₂), 50.1 (NCH₂), 38.8 (N(CH₃)₂), 1.1 (Si(CH₃)₃). ¹¹B{¹H} NMR (128 MHz, dichlorobenzene-*d*₄): δ = -6.27 (*B*(3,5-Cl₂C₆H₃)₄). Anal. calcd. (found) for C₄₆H₆₂BCl₆N₆Si₃Ti (1124.57 g \Box mol⁻¹) in %: C 49.09 (48.46), H 5.55 (5.78), N 7.47 (7.37).

Figure S32. ¹H NMR spectrum of **6**[B(3,5-Cl₂C₆H₃)₄] \square dmap in 1,2-dichlorobenzene-*d*₄, *C₆Cl₂D₃H.

 $\label{eq:Figure S34. } ^{11}B\{^{1}H\} \ \text{NMR spectrum of } \mathbf{6}[B(3,5\text{-}Cl_2C_6H_3)_4] \ \square \ \text{dmap in } 1,2\text{-}dichlorobenzene-d_4.$

10. $[(dmap)Ti(N_3N)][B(C_6F_5)_4] (6[B(C_6F_5)_4] \Box dmap)$

Compound **6**[B(C₆F₅)₄] \Box Et₂O (20 mg, 17 µmol) and DMAP (4.2 mg, 34 µmol, 2 equiv.) were combined in chlorobenzene (5 mL). The reaction mixture was stirred for 1 h at room temperature. All volatiles were removed under reduced pressure and the crude product rinsed with *n*-pentane (3× 5 mL). The product was dried *in vacuo*, triturated with *n*-pentane (1 mL), and isolated as yellow powder (18 mg, 15 µmol, 86% based on **6**[B(C₆F₅)₄] \Box Et₂O). ¹H NMR (400 MHz, 1,2-dichlorobenzene-*d*₄): δ = 8.15 (d, 2H, ³*J*_{HH} = 7.4 Hz, *m*-dmap), 6.14 (d, 2H, ³*J*_{HH}

= 7.4 Hz, o-dmap), 3.71 (t, ${}^{3}J_{HH}$ = 5.2 Hz, 6H, NC*H*₂), 2.91 (t, ${}^{3}J_{HH}$ = 5.2 Hz, 6H, NC*H*₂), 2.68 (s, 6H, N(C*H*₃)₂), -0.01 (s, 27H, Si(C*H*₃)₃). 13 C{¹H} NMR (101 MHz, 1,2-dichlorobenzene-*d*₄): δ = 155.6 (*ipso*-dmap), 148.7 (*m*-dmap), 148.5 (d, ${}^{1}J_{CF}$ = 241 Hz, Ph), 138.2 (d, ${}^{1}J_{CF}$ = 247 Hz, Ph), 136.4 (d, ${}^{1}J_{CF}$ = 255 Hz, Ph), 128.3 (Ph), 105.7 (o-dmap), 66.9 (NCH₂), 49.8 (NCH₂), 38.6 (N(CH₃)₂), 0.7 (Si(CH₃)₃). 11 B{¹H} NMR (128 MHz, 1,2-dichlorobenzene-*d*₄): δ = -16.18 (*B*(C₆F₅)₄). 19 F NMR (377 MHz, dichlorobenzene-*d*₄): δ = -131.7 (br. t, *o*-*F*), -162.4 (t, ${}^{3}J_{FF}$ = 20.5 Hz, *p*-*F*), -166.2 (br. s, *m*-*F*). Anal. calcd. (found) for C₄₆H₄₉BF₂₀N₆Si₃Ti (1208.84 g□mol⁻¹) in %: C 45.71 (44.75), H 4.09 (4.77), N 6.95 (6.63).

Figure S35. ¹H NMR spectrum of **6**[B(C₆F₅)₄] \square dmap in 1,2-dichlorobenzene-*d*₄, *C₆Cl₂D₃H, **chlorobenzene.

Figure S36. ¹³C{¹H} NMR spectrum of $6[B(C_6F_5)_4]$ dmap in 1,2-dichlorobenzene- d_4 , *C₆Cl₂D₄.

Figure S37. ¹¹B{¹H} NMR spectrum of $6[B(C_6F_5)_4]$ dmap in 1,2-dichlorobenzene- d_4 .

-110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 Chemical Shift (ppm)

Figure S38. ¹⁹F NMR spectrum $6[B(C_6F_5)_4]$ dmap in 1,2-dichlorobenzene- d_4 .

11. [Ti{N(CH₂CH₂NSiMe₃)₂(CH₂CH₂NSiMe₃(μ-CO₂-ηO:ηO[´]))}]₂[B(3,5-Cl₂C₆H₃)₄]₂ (7[B(3,5-Cl₂C₆H₃)₄]₂)

Figure S40. IR spectrum of $7[B(3,5-Cl_2C_6H_3)_4]_2$ in a KBr pellet.

12. [Ti{N(CH₂CH₂NSiMe₃)₂(CH₂CH₂NSiMe₃(μ-CO₂-ηO:ηO[´]))}]₂[B(C₆F₅)₄]₂ (7[B(C₆F₅)₄]₂)

Figure S41. ¹H NMR spectrum of $7[B(C_6F_5)_4]_2$ in 1,2-dichlorobenzene- d_4 , *C₆Cl₂D₃H, **Et₂O, ***decomposition products.

Figure S42. ¹³C{¹H} NMR spectrum of $7[B(C_6F_5)_4]_2$ in 1,2-dichlorobenzene- d_4 , *C₆Cl₂D₄, **Et₂O.

-60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 Chemical Shift (ppm) Figure S44. ¹⁹F NMR spectrum of **7**[B(C₆F₅)₄]₂ in 1,2-dichlorobenzene-*d*₄.

Figure S45. Extract from the HSQC spectrum of $7[B(C_6F_5)_4]_2$ in 1,2-dichlorobenzene- d_4 .

13. [(py)Ti{N(CH₂CH₂NSiMe₃)₂(CH₂CH₂NSiMe₃(CO₂-κ²O,O[^]))}] (8[B(C₆F₅)₄]□py)

Figure S47. ¹H NMR spectrum of **8**[B(C₆F₅)₄] \Box py in 1,2-dichlorobenzene-*d*₄, *C₆Cl₂D₃H, **free pyridine, ***Et₂O, # unidentified impurity.

Figure S48. ¹³C{¹H} NMR spectrum of **8**[B(C₆F₅)₄] \Box py in 1,2-dichlorobenzene-*d*₄, *C₆Cl₂D₄, **Et₂O.

Figure S49. ¹¹B{¹H} NMR spectrum of **8**[B(C₆F₅)₄] \Box py in 1,2-dichlorobenzene-d₄.

Figure S50. ¹⁹F NMR spectrum of $8[B(C_6F_5)_4]$ py in 1,2-dichlorobenzene- d_4 .

Figure S51. Extract from the HSQC spectrum of $8[B(C_6F_5)_4]$ py in 1,2-dichlorobenzene- d_4 .

Figure S53. Comparison of the ¹H NMR spectra of $8[B(C_6F_5)_4] \Box py$ ("Monomer") and $7[B(C_6F_5)_4]_2$ ("Dimer") in 1,2-dichlorobenzene- d_4 , *C₅D₃Cl₂H, **Et₂O.

14. [Ti{N(CH₂CH₂NSiMe₃)₂(CH₂CH₂NSiMe₃(μ-CS₂-ηS:ηS[´]))}]₂[B(3,5-Cl₂C₆H₃)₄]₂ (9[B(3,5-Cl₂C₆H₃)₄]₂)

 CS_2 (0.6 µL, 9 µmol) was added to a solution of **6**[B(3,5-Cl₂C₆H₃)₄] \Box Et₂O (10 mg, 9 µmol) in 1,2-dichlorobenzene-*d*₄ (0.6 mL). The reaction mixture was allowed to stand at room temperature, which gave red crystals within 24 h. The liquor was decanted off, the crystals rinsed with *n*-pentane (1 mL), and dried under reduced pressure (8 mg, 4 µmol, 82% based on **6**[B(3,5-Cl₂C₆H₃)₄] \Box Et₂O). ¹H NMR (400 MHz, 1,2-

dichlorobenzene-*d*₄): δ = 7.64 (m, 16H, o-Ph), 7.18 (t, ³J_{HH} = 2.0 Hz, 8H, *p*-Ph), 4.08 (m, 4H, 4× NC*H*H), 3.73 (m, 8H, 4× NC*H*H and 2× NC*H*₂), 3.38 (t, ³J_{HH} = 5.5 Hz, 4H, 2× NC*H*₂), 3.28 (m, 4H, 4× NC*H*H), 3.09 (m, 4H, 2× NC*H*H), 0.74 (s, 18H, 2× S₂CNSi(C*H*₃)₃), 0.41 (s, 36H, 2× Si(C*H*₃)₃). ¹³C{¹H} NMR (101 MHz, 1,2-dichlorobenzene-*d*₄): δ = 199.5 (NCS₂), 165.6 (quint., ¹J_{BC} = 49.4 Hz, *o*-C), 133.9 (t, ²J_{BC} = 4.2 Hz, *m*-C), 133.8 (br. s, *o*-C), 124.0 (*p*-C), 55.7 (2× S₂CNCH₂), 53.2 (2× S₂CNCH₂), 53.1 (4× NCH₂), 51.1 (4× NCH₂) 1.0 (s, 4× Si(CH₃)₃), 0.4 (s, 2× S₂CNSi(CH₃)₃). ¹¹B{¹H} NMR (128 MHz, 1,2-dichlorobenzene-*d*₄): δ = -6.6 (*B*(3,5-Cl₂C₆H₃)₄). Anal. calcd. (found) for C₈₀H₁₀₂N₈Si₆S₄B₂Cl₁₆Ti₂ (2157.06 g□mol⁻¹) in %: C 44.55 (43.50), H 4.77 (4.49), N 5.19 (5.08). IR (KBr pellet): v_{asym}(NCS₂) = 1562 cm⁻¹ and 1543 cm⁻¹.

Figure S54. ¹H NMR spectrum of **9**[B(3,5-Cl₂C₆H₃)₄]₂ in 1,2-dichlorobenzene-*d*₄, *C₆Cl₂D₃H, **Et₂O.

Figure S57. Extract from the COSY spectrum of 9[B(3,5-Cl₂C₆H₃)₄]₂ in 1,2-dichlorobenzene-d₄.

Figure S58. Extract from the HSQC spectrum of 9[B(3,5-Cl₂C₆H₃)₄]₂ in 1,2-dichlorobenzene-d₄.

Figure S59. IR spectrum of $9[B(3,5-Cl_2C_6H_3)_4]_2$ in a KBr pellet.

15. [(Ti(N₃N))₂(μ-OCHO-η*O*:η*O*['])][B(3,5-Cl₂C₆H₃)₄] (10[B(3,5-Cl₂C₆H₃)₄])

Figure S61. ¹³C{¹H} NMR spectrum of **10**[B(3,5-Cl₂C₆H₃)₄] in 1,2-dichlorobenzene- d_4 , *C₆Cl₂D₄.

Chemical Shift (ppm)

Figure S62. ¹¹B{¹H} NMR spectrum of $10[B(3,5-Cl_2C_6H_3)_4]$ in 1,2-dichlorobenzene- d_4 .

Figure S63. IR spectrum of $10[B(3,5-Cl_2C_6H_3)_4]$ in a KBr pellet.

16. [(Ti(N₃N))₂(μ-OCHO-ηO:ηO[^])][B(C₆F₅)₄] (10[B(C₆F₅)₄])

Figure S64. ¹H NMR spectrum of $10[B(C_6F_5)_4]$ in 1,2-dichlorobenzene- d_4 , *C₆Cl₂D₃H.

Figure S65. ¹³C{¹H} NMR spectrum of $10[B(C_6F_5)_4]$ in 1,2-dichlorobenzene- d_4 , *C₆Cl₂D₄.

Figure S66. ¹¹B{¹H} NMR spectrum of $10[B(C_6F_5)_4]$ in 1,2-dichlorobenzene- d_4 .

Figure S67. ¹⁹F NMR spectrum of $10[B(C_6F_5)_4]$ in 1,2-dichlorobenzene- d_4 .

Figure S69. IR spectrum of **10**[B(C₆F₅)₄] in a KBr pellet.

X-ray crystallography

X-ray diffraction data of **4**, **6**[B(3,5-Cl₂C₆H₃)₄]·Et₂O, **6**[B(3,5-Cl₂C₆H₃)₄]·py, **7**, and **10** were collected at –173 °C on a Bruker D8 goniometer with an APEX CCD area-detector in ω -scan mode. Mo-K α radiation (multilayer optics, λ = 0.71073 Å) from an Incoatec microsource was used. The SMART program package was used for the data collection and unit cell determination; processing of the raw frame data was performed using SAINT,⁵ absorption corrections were applied with SADABS.⁶ The structures were solved by direct methods using SIR-92.⁷

The crystal lattice of **7** shows crystallographic C_i symmetry for the molecular cation around a center of inversion (Wyckoff letter 2*e*). Each of the structures **6**[B(3,5-Cl₂C₆H₃)₄]·Et₂O and **6**[B(3,5-Cl₂C₆H₃)₄]·py was found with two crystallographically independent molecular cations as well as two molecular anions.

The refinements were carried out against F^2 with SHELXL-2013⁸ as implemented in the program system WinGX.⁹ In the refinement, all reflections were used except for the reflection 1 - 1 1 in **6**[B(3,5-Cl₂C₆H₃)₄] py and the reflection 0 0 1 in **7** that were omitted because they were most likely affected by the beam stop. The structure of **6**[B(3,5-Cl₂C₆H₃)₄] Et₂O was refined as an inversion twin. In the structure of **6**[B(3,5-Cl₂C₆H₃)₄] Et₂O was refined and C15 as well as the atoms Si4, N7, C46, C48, and C52 of the second independent molecule were disordered. The disorder was modelled with split positions. All non-hydrogen atoms were refined with anisotropic displacement parameters. Because of the disorder in the structure of **6**[B(3,5-Cl₂C₆H₃)₄] Et₂O, the atoms C14, C15, C16, N7, and C46 were refined with isotropic displacement parameters. Refinement results are given in Table S1 and in Table S2.

All hydrogen atoms were included in idealized position and treated as riding. Only the hydrogen atom H1 in **10** that belongs to the formyl unit was located in a Fourier difference map and its position was refined with an isotropic displacement parameter. Graphical representations were performed with the program DIAMOND.¹⁰

	4	6 [B(3,5-Cl ₂ C ₆ H ₃) ₄] [•] Et ₂ O	6 [B(3,5-CbC ₆ H ₃) ₄] [•] py
formula	C ₁₅ H ₃₉ N ₄ KOSi ₃ Ti	$C_{24}H_{12}BCl_8, C_{19}H_{49}N_4OSi_3Ti$	C24H12BCl8,C20H44N5Si3Ti
$Fw/gmol^{-1}$	462.77	1076.53	1081.51
color, habit	colourless, block	yellow, block	orange, fragment
crystal size / mm	$\begin{array}{c} 0.15\times 0.20\times \\ 0.28\end{array}$	$0.09 \times 0.20 \times 0.27$	$0.30 \times 0.30 \times 0.35$
crystal system	monoclinic	orthorhombic	triclinic
space group	$P2_{1}/c$	$Pca2_1$	<i>P</i> -1
<i>a</i> / Å	10.2840(15)	24.6983(14)	16.8069(18)
b / Å	10.5727(15)	17.2605(10)	17.8453(19)
<i>c</i> / Å	23.865(3)	24.7312(14)	17.9679(19)
α/°			94.240(2)
β/°	100.149(3)		92.638(3)
γ / °			92.916(3)
V/Å ³	2554.2(6)	10543.0(10)	5360.6(10)
Ζ	4	8	4
$d_{\rm calc}/{\rm Mg}{\rm m}^{-3}$	1.203	1.356	1.340
μ (MoK α)/mm ⁻¹	0.650	0.673	0.661
F(000)	992	4480	2240
θ range / °	2.01-25.10	1.18-30.51	1.14–26.55
index ranges	$\begin{array}{l} -12 \leq h \leq 12, -12 \\ \leq k \leq 12, -28 \leq l \\ \leq 28 \end{array}$	$\begin{array}{l} -35 \leq h \leq 35, -24 \leq k \leq 24, \\ -35 \leq l \leq 35 \end{array}$	$\begin{array}{l} -21 \leq h \leq 21, -22 \leq k \leq \\ 22, -22 \leq l \leq 22 \end{array}$
refln.	27064 (0.0873)	158987 (0.1287)	66527 (0.1127)
indep. refl. (R_{int})	4549	31318	22235
observed reflns	3489	17922	13949
data/restr./param	4549 / 0 / 235	31318 / 1 / 1143	22235 / 0 / 1135
$R_1, wR2 [I> 2\sigma(I)]$	0.0405, 0.0882	0.0401, 0.0661	0.0612, 0.1271
R_1 , $wR2$ (all data)	0.0597, 0.0972	0.0818, 0.0731	0.1107, 0.1494
GooF on F^2	1.025	0.675	1.015
largest diff. peak, hole/ e [.] Å ³	0.380, -0.281	0.546, -0.395	1.200, -0.957
CCDC number	1586682	1586683	1586684

Table S1. Crystallographic data of compounds 4, $6[B(3,5-Cl_2C_6H_3)_4]Et_2O$ and $6[B(3,5-Cl_2C_6H_3)_4]Py$.

	7	10
formula	C ₃₂ H ₇₈ N ₈ O ₄ Si ₆ Ti, 2(C ₂₄ H ₁₂ BCl ₈)	C ₃₁ H ₇₉ N ₈ O ₂ Si ₆ Ti ₂ , C ₂₄ BF ₂₀
$Fw/gmot^1$	2092.85	1539.41
color, habit	yellow, block	yellow, rod
crystal size / mm	$0.13 \times 0.24 \times 0.30$	$0.16 \times 0.17 \times 0.30$
crystal system	triclinic	monoclinic
space group	<i>P</i> -1	$P2_{1}/c$
<i>a</i> / Å	13.750(5)	11.2553(7)
<i>b</i> / Å	14.046(6)	27.0488(17)
<i>c</i> / Å	14.333(6)	23.3434(15)
α/°	85.429(7)	
β/°	88.237(7)	91.2981(13)
γ / °	60.975(6)	
$V/Å^3$	2412.7(17)	7104.9(8)
Ζ	1	4
$d_{\rm calc}/{\rm Mg}{\rm m}^{-3}$	1.440	1.439
μ (MoK α)/mm ⁻¹	0.734	0.423
<i>F</i> (000)	1080	3176
θ range / °	2.11–26.71	1.15-25.05
index ranges	$-17 \le h \le 17, -17 \le k \le 17, -18$ $\le 1 \le 17$	$ \begin{array}{c} -13 \leq h \leq 13, -32 \leq k \leq 32, -27 \leq \\ 1 \leq 27 \end{array} $
refln.	29139 (0.1311)	77161 (0.1193)
indep. refl. (R_{int})	10136	12551
observed reflns.	5463	8172
data/restr/param	29136 / 0 / 541	12551 / 0 / 869
$[R_1, wR_2]$ $[I > 2\sigma(I)]$	0.0952, 0.2399	0.0388, 0.0623
R_1, wR_2 (all data)	0.1729, 0.2853	0.0655, 0.0688
GooF on F^2	1.045	0.797
largest diff. peak, hole/ e [·] Å ³	1.949, -1.298	0.349, -0.364
CCDC number	1586685	1586686

 Table S2. Crystallographic data of compounds 7 and 10.

References

- a) C. C. Cummins, R. R. Schrock, W. M. Davis, *Organometallics*, 1992, **11**, 1452-1454;
 b) C. C. Cummins, J. Lee, R. R. Schrock, W. M. Davis, *Angew. Chem.*, 1992, **104**, 1510-1512.
- 2. H. Kulinna, T. P. Spaniol, L. Maron, J. Okuda, *Inorg. Chem.*, 2012, **51**, 12462-12472.
- 3. X. Zhu, Y. Wang, H. Li, *Phys. Chem. Chem. Phys.*, 2011, **13**, 17445-17448.
- 4. A. Marcó, R. Compañó, R. Rubio, I. Casals, *Microchim. Acta*, 2003, 142, 13-19.
- 5. Bruker, SAINT-Plus. Bruker AXS Inc.: Madison, Wisconsin, USA, 1999.
- 6. Bruker, SADABS. Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.
- 7. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343-350.
- 8. G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112-122.
- 9. L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849-854.
- 10. K. Brandenburg, DIAMOND. Crystal Impact GbR: Bonn, Germany, 2017.