Rational Construction of an ssa-Type of MOF through Preorganizing

the Ligand's Conformation and Its Exceptional Gas Adsorption

Properties

Yao Wang,^a Minghui He,^a Zhi Tian,^b Haoyan Zhong,^a Lisha Zhu,^a Yingying Zhang,^a Xiaoping Zhang,^a De-Li Chen^{*b} and Yabing He^{*a}

^{*a*} Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: <u>heyabing@zjnu.cn</u>.

^b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China. E-mail: chendl@zjnu.cn

Fig. S1 The digital photographs of as-synthesized (a) ZJNU-57a and (b) ZJNU-57b.

Fig. S2 The experimental (red) and simulated (black) PXRD patterns for ZJNU-57a.

Fig. S3 TGA curve of the as-synthesized ZJNU-57a at nitrogen atmosphere.

Fig. S4 FTIR spectra of the organic ligand H_4L (black) and the as-synthesized ZJNU-57a (red).

 $S_{\text{BET}} = 1/(1.27522 \times 10^{-7} + 0.00225)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1935 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00202)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2155 \text{ m}^2 \text{ g}^{-1}$ BET constant $C = 1 + 0.00225/1.27522 \times 10^{-7} = 17645$

$$(P/P_o)_{n_m} = \frac{1}{\sqrt{C}+1} = 0.007472$$

Fig. S5 (a) The consistency, (b) BET and (c) Langmuir plots for ZJNU-57.

Fig. S6 Three adsorption-desorption cycles for (a) C_2H_2 and (b) CO_2 in ZJNU-57 without reactivation between two consecutive cycles

Fig. S7 Isostere plots for (a) C_2H_2 , (b) CO_2 and (c) CH_4 adsorption in ZJNU-57

Fig. S8 Comparison of the pure-component isotherm data for C_2H_2 , CO_2 , and CH_4 in ZJNU-57 with the fitted isotherms at 278 K, 288 K and 298 K

Fig. S9 PXRD patterns for those treated samples. The as-synthesized sample was soaked in acetone, dichloromethane, ethanol and water for 36 h at ambient conditions, and then collected for PXRD measurements.

Fig. S10 Comparison of N_2 isotherms at 77 K of ZJNU-57 before and after immersion in water for 36 h. The solid and open symbols represent adsorption and desorption, respectively. STP = standard temperature and pressure.

 $S_{\text{BET}} = 1/(1.73587 \times 10^{-7} + 0.0022)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1978 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00199)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2187 \text{ m}^2 \text{ g}^{-1}$ BET constant $C = 1 + 0.0022/1.73587 \times 10^{-7} = 12675$

$$(P/P_o)_{n_m} = \frac{1}{\sqrt{C}+1} = 0.008804$$

Fig. S11 (a) The consistency, (b) BET and (c) Langmuir plots for **ZJNU-57** which is immersed in water for 36 h.

ppm

Fig. S11¹H and ¹³C NMR spectra

Fig. S12 Topological analyses for **ZJNU-57**. **ZJNU-57** can be rationalized as a (4,4)-connected *ssa*-type network with the point symbol of $(4^2 \cdot 6^4)(4^2 \cdot 8^4)$, which is based on the following simplifications. The dicopper paddlewheel unit is connected to four organic ligands and therefore can be regarded as four-connected nodes. Also, the organic ligand is connected to four dicopper paddlewheel units and therefore can be considered as 4-connected nodes.

 Table S1 Langmuir-Freundich parameters for adsorption of C₂H₂, CO₂, and CH₄ in

 ZJNU-57.

	$q_{ m sat}$	b_0	Ε	v	
	(mmol g^{-1})	$(kPa)^{-\nu}$	(kJ mol ⁻¹)		
C_2H_2	12.00438	1.34133×10 ⁻⁷	30.587	0.99312	
CO ₂	24.70544	1.86966×10 ⁻⁷	23.403	1	
CH ₄	19.00656	5.96455×10 ⁻⁷	17.011	1	

MOFs	ZJNU-57a	ZJNU-57b	
Empirical formula	$C_{25}H_{20}Cu_2O_{10}$	$C_{25}H_{20}Cu_2O_{10}$	
Formula weight	607.49	607.49	
λ (Å)	0.71073	1.34139	
Crystal system	Hexagonal	Hexagonal	
Space group	P6 ₃ /mmc	P6 ₃ /mmc	
	a = 18.3886(3) Å	a = 18.4124(3) Å	
	b = 18.3886(3) Å	<i>b</i> = 18.4124(3) Å	
Unit call dimensions	c = 23.7146(9) Å	c = 23.7198(9) Å	
Unit cen dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	
	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$	
$V(\text{\AA}^3)$	6944.5(3)	6964.1(3)	
Ζ	6	6	
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	0.872	0.869	
$\mu (\mathrm{mm}^{-1})$	0.949	1.399	
<i>F</i> (000)	1848	1848	
θ range for data collection (°)	2.14 to 25.35	4.04 to 53.96	
	$-19 \le h \le 14$	$-22 \le h \le 13$	
Limiting indices	$-22 \le k \le 13$	$-13 \le k \le 17$	
	$-28 \le l \le 24$	$-26 \le l \le 17$	
Reflections collected / unique	22928 / 2402	14401 / 2353	
R _{int}	0.0546	0.0602	
Max. and min. transmission	0.9028 and 0.8113	0.8613 and 0.7391	
Pafinament method	Full-matrix	Full-matrix	
Kermement method	least-squares on F^2	least-squares on F^2	
Data/restraints/parameters	2402 / 0 / 97	2353 / 0 / 97	
Goodness-of-fit on F^2	1.015	1.026	
Einel <i>P</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0597$	$R_1 = 0.0577$	
That K multes $[1 > 20(1)]$	$wR_2 = 0.1854$	$wR_2 = 0.1869$	
R indices (all data)	$R_1 = 0.0818$	$R_1 = 0.0830$	
	$wR_2 = 0.1973$	$wR_2 = 0.1967$	
Largest diff. peak and hole ($e^{-}Å^{-3}$)	0.519 and -0.694	0.381 and -0.549	
CCDC	1587922	1587923	

Table S2 Crystal data and structure refinement for ZJNU-57a and ZJNU-57b.

Topology Type	MOF	Ligand structure	Point symbol for metal nodes	Point symbol for Ligand nodes	Point symbol for the overall network	Ref
Type-I	UHM-6	ноос у Субарание Соон	$\{4 \cdot 6^2 \cdot 8^3\}$ $\{4^6\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{4^2 \cdot 6^2 \cdot 8^2\}$	$\{4\cdot 6^2\cdot 8^3\}_2\{4\cdot 6^4\cdot 8\}_2\{4^2\cdot 6^2\cdot 8^2\}\{4^6\}$	1
	PMOF-3	ноос соон соон	$\{4 \cdot 6^2 \cdot 8^3\}$ $\{4^6\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{4^2 \cdot 6^2 \cdot 8^2\}$	$\{4\cdot 6^2\cdot 8^3\}_2\{4\cdot 6^4\cdot 8\}_2\{4^2\cdot 6^2\cdot 8^2\}\{4^6\}$	2
	HNUST-4	ноос соон	$\{4 \cdot 6^2 \cdot 8^3\}$ $\{4^6\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{4^2 \cdot 6^2 \cdot 8^2\}$	$\{4\cdot 6^2\cdot 8^3\}_2\{4\cdot 6^4\cdot 8\}_2\{4^2\cdot 6^2\cdot 8^2\}\{4^6\}$	3
	FЛ-Н5	ноос соон соон	$\{4 \cdot 6^2 \cdot 8^3\}$ $\{4^6\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{4^2 \cdot 6^2 \cdot 8^2\}$	$\{4\cdot 6^2\cdot 8^3\}_2\{4\cdot 6^4\cdot 8\}_2\{4^2\cdot 6^2\cdot 8^2\}\{4^6\}$	4
	ZJNU-78	ноос соон соон	$\{4 \cdot 6^2 \cdot 8^3\}$ $\{4^6\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{4^2 \cdot 6^2 \cdot 8^2\}$	$\{4\cdot 6^2\cdot 8^3\}_2\{4\cdot 6^4\cdot 8\}_2\{4^2\cdot 6^2\cdot 8^2\}\{4^6\}$	5
Type-II	PCN-305	ноос	${4^2 \cdot 6^4}$ ${6^4 \cdot 8^2}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{6^6\}$	${4 \cdot 6^4 \cdot 8}_2 {4^2 \cdot 6^4} {6^4 \cdot 8^2}_2 {6^6}$	6
	PCN-306	ноос соон соон	$\{4^2 \cdot 6^4\}$ $\{6^4 \cdot 8^2\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{6^6\}$	$\{4{\cdot}6^4{\cdot}8\}_2\{4^2{\cdot}6^4\}\{6^4{\cdot}8^2\}_2\{6^6\}$	6
	PCN-307	ноос ССН3	$\{4^2 \cdot 6^4\}$ $\{6^4 \cdot 8^2\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{6^6\}$	$\{4\cdot 6^4\cdot 8\}_2\{4^2\cdot 6^4\}\{6^4\cdot 8^2\}_2\{6^6\}$	6
	PCN-308	ноос ССР3 ноос ССООН соон СООН	$\{4^2 \cdot 6^4\}$ $\{6^4 \cdot 8^2\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{6^6\}$	$\{4\cdot 6^4\cdot 8\}_2\{4^2\cdot 6^4\}\{6^4\cdot 8^2\}_2\{6^6\}$	6
	NJFU-3	ноос соон	$\{4^2 \cdot 6^4\}\$ $\{6^4 \cdot 8^2\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{6^6\}$	$\{4\cdot 6^4\cdot 8\}_2\{4^2\cdot 6^4\}\{6^4\cdot 8^2\}_2\{6^6\}$	7
	Cu-DDC	ноос соон	$\{4^2 \cdot 6^4\}$ $\{6^4 \cdot 8^2\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{6^6\}$	${4\cdot6^4\cdot8}_2{4^2\cdot6^4}{6^4\cdot8^2}_2{6^6}$	8

Table S3 Summary of the topological structures of copper-based MOFs derived frombent diisophthalate ligands

	ZJU-195	HOOC COOH COOH COOH	$\{4^2 \cdot 6^4\}\$ $\{6^4 \cdot 8^2\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{6^6\}$	$\{4\cdot 6^4\cdot 8\}_2\{4^2\cdot 6^4\}\{6^4\cdot 8^2\}_2\{6^6\}$	9
Type-III	ZJNU-54	ноос	$\{4^2 \cdot 6^4\}$	$\{4^2\cdot 8^4\}$	$\{4^2 \cdot 6^4\}\{4^2 \cdot 8^4\}$	10
	Cu ₂ L	ноос яі соон	$\{4^2 \cdot 6^4\}$	$\{4^2 \cdot 8^4\}$	$\{4^2 \cdot 6^4\}\{4^2 \cdot 8^4\}$	11
	Cu ₂ L	HOOC COOH	$\{4^2 \cdot 6^4\}$	$\{4^2 \cdot 8^4\}$	$\{4^2 \cdot 6^4\}\{4^2 \cdot 8^4\}$	12
	Cu ₂ L	HOOC HOOC HOOC HOOC HOOC HOOC HOOC HOOC	$\{4^2 \cdot 6^4\}$	$\{4^2 \cdot 8^4\}$	$\{4^2 \cdot 6^4\}\{4^2 \cdot 8^4\}$	13
	Cu ₂ L	ноос соон соон	$\{4^2 \cdot 6^4\}$	$\{4^2 \cdot 8^4\}$	$\{4^2 \cdot 6^4\}\{4^2 \cdot 8^4\}$	14
	Cu ₂ L	СF ₃ НООС НИ2 СООН СООН	$\{4^2 \cdot 6^4\}$	$\{4^2 \cdot 8^4\}$	$\{4^2 \cdot 6^4\}\{4^2 \cdot 8^4\}$	15
Type-IV	Cu ₂ (cdip)	ноос соон соон	$\{6^4 \cdot 8^2\}$ $\{4^2 \cdot 6^4\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{4^2 \cdot 6^2 \cdot 8^2\}$	$\{4\cdot 6^4\cdot 8\}_2\{4^2\cdot 6^2\cdot 8^2\}\{4^2\cdot 6^4\}_2\{6^4\cdot 8^2\}$	16
Type-V	PCN-88	ноос соон соон	$\{4^6\}$ $\{6^4 \cdot 8 \cdot 10\}$	$\{4 \cdot 6^4 \cdot 8\}$ $\{6^4 \cdot 8^2\}$	$\{4\cdot 6^4\cdot 8\}_2\{4^6\}\{6^4\cdot 8\cdot 10\}_2\{6^4\cdot 8^2\}$	17
Type VI	PCN-12	ноос соон соон	$\{4 \cdot 6^{2} \cdot 8^{3}\}$ $\{4^{4} \cdot 6^{2}\}$ $\{4^{2} \cdot 6^{2} \cdot 8^{2}\}$	${4^2 \cdot 6^3 \cdot 8}$ ${4^2 \cdot 6^2 \cdot 8^2}$	$\{4\cdot 6^2\cdot 8^3\}_2\{4^2\cdot 6^2\cdot 8^2\}_5\{4^2\cdot 6^3\cdot 8\}_4\{4^4\cdot 6^2\}$	18
Type VII	Cu ₂ L	ноос у Соон соон	$\{4 \cdot 6^5\}$ $\{4 \cdot 6^2 \cdot 8^3\}$	$\{4.6^5\}$ $\{4.6^4.8\}$	$\{4\cdot 6^2\cdot 8^3\}$ $\{4\cdot 6^4\cdot 8\}$ $\{4\cdot 6^5\}_4$	19

Reference

- 1. D. Frahm, M. Fischer, F. Hoffmann and M. Fröba, *Inorg. Chem.*, 2011, **50**, 11055-11063.
- X. Liu, M. Park, S. Hong, M. Oh, J. W. Yoon, J.-S. Chang and M. S. Lah, *Inorg. Chem.*, 2009, 48, 11507-11509.
- B. Zheng, X. Lin, Z. Wang, R. Yun, Y. Fan, M. Ding, X. Hua and P. Yi, *CrystEngComm*, 2014, 16, 9586-9589.
- J. Pang, F. Jiang, M. Wu, D. Yuan, K. Zhou, J. Qian, K. Su and M. Hong, *Chem. Commun.*, 2014, 50, 2834-2836.
- 5. F. Chen, D. Bai, Y. Wang, M. He, X. Gao and Y. He, *Dalton Trans.*, 2017, DOI: 10.1039/C1037DT04087C
- Y. Liu, J.-R. Li, W. M. Verdegaal, T.-F. Liu and H.-C. Zhou, *Chem. Eur. J.*, 2013, 19, 5637-5643.
- 7. L. Du, Z. Lu, L. Xu and J. Zhang, *RSC Adv.*, 2017, **7**, 21268-21272.
- 8. F. Wang, S. Kusaka, Y. Hijikata, N. Hosono and S. Kitagawa, ACS Appl. Mater. Interfaces, 2017, 9, 33455-33460.
- L. Zhang, K. Jiang, Y. Li, D. Zhao, Y. Yang, Y. Cui, B. Chen and G. Qian, *Cryst. Growth Des.*, 2017, 17, 2319-2322.
- J. Jiao, L. Dou, H. Liu, F. Chen, D. Bai, Y. Feng, S. Xiong, D.-L. Chen and Y. He, *Dalton Trans.*, 2016, 45, 13373-13382.
- 11. C.-Y. Gao, H.-R. Tian, J. Ai, L.-J. Li, S. Dang, Y.-Q. Lan and Z.-M. Sun, *Chem. Commun.*, 2016, **52**, 11147-11150.
- T. K. Pal, D. De, S. Neogi, P. Pachfule, S. Senthilkumar, Q. Xu and P. K. Bharadwaj, *Chem. Eur. J.*, 2015, **21**, 19064-19070.
- 13. T. K. Pal, D. De, S. Senthilkumar, S. Neogi and P. K. Bharadwaj, *Inorg. Chem.*, 2016, 55, 7835-7842.
- Y.-T. Yan, W.-Y. Zhang, Y.-L. Wu, J. Li, Z.-P. Xi, Y.-Y. Wang and L. Hou, *Dalton Trans.*, 2016, 45, 15473-15480
- 15. A. K. Gupta, D. De, K. Tomar and P. K. Bharadwaj, *Dalton Trans.*, 2017, 10.1039/C1037DT04006G.
- 16. G. Feng, Y. Peng, W. Liu, F. Chang, Y. Dai and W. Huang, *Inorg. Chem.*, 2017, **56**, 2363-2366.
- J.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena and H.-C. Zhou, *Nature Commun.*, 2013, 4, 1538.
- X.-S. Wang, S. Ma, P. M. Forster, D. Yuan, J. Eckert, J. J. Lpez, B. J. Murphy, J. B. Parise and H.-C. Zhou, *Angew. Chem. Int. Ed.*, 2008, 47, 7263-7266.
- 19. Y. Xie, H. Yang, Z. U. Wang, Y. Liu, H.-C. Zhou and J.-R. Li, *Chem. Commun.*, 2014, **50**, 563-565.