Synthesis and Spectroscopic Properties of Silver-Fluorescein

Codoped Phosphotungstate Hollow Spheres

Guan Wang,^a Yikun Wang,^a Ruru Meng,^a Yangyang Zhang,^a Yanmei Xing,^a Xiangxing Xu^{b*} and Jingyang Niu^{a*}

a. Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, China. E-mail: wangguan@henu.edu.cn, jyniu@henu.edu.cn

b. School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China. E-mail: xuxx@njnu.edu.cn

Fig.S1 EDX spectrum of FS-KPW₁₂.

Fig.S2 EDX spectrum of AgPW₁₂.

Fig.S3 EDX spectrum of FS-AgPW₁₂ (excess FS).

Fig.S4 SEM images of different dosage of FS in nano/micro structures: (a) 0.000 mmol; (b) 0.006 mmol; (c) 0.008 mmol; (d) 0.010 mmol; (e) 0.011 mmol, scale bar in these images are 1 μm.

Fig.S5 Schematic illustration of the aggregation process of PW₁₂ particle.

Fig.S6 Photodegradation reaction of RhB in the presence of FS-AgPW₁₂ upon 500 W Hg lamp irradiation. Inset: Photodegradation efficiency of the catalyst during 4.5 h.

Fig.S7 Blank reactions of photodegradation: RhB substrates were kept in visible irradiation either in the absence (a) of or in the presence (b) of FS-AgPW₁₂, the degradation reactions of RhB hardly happened; (c) RhB substrates were kept in UV irradiation alone.

Fig.S8 Recycling tests of RhB photodegradation on FS-AgPW₁₂ under 500 W Hg lamp irradiation for 4.5 h.

Toonm Electronic Image 1							
¢	1						
0 1	2 3 4	5 6 keV					
Elements	Percent by weight	Percent by Atoms					
CK	3.06	14 37					
	24.02	67.86					
D V	0.42	07.00					
I K.	2.55	1.02					
Ag L W M	68 14	1.05					
VV 1V1	00.17	10.17					
Total	100.00	100.00					

Fig.S9 We used Energy dispersive X-ray spectroscopy (EDX) to characterize the composition of FS-AgPW₁₂. In this regard, this sample was identified using silicon wafer as substrate. The analysis evidently indicates the presence of P, W, Ag, O and C components. The containing of C can be assigned to the dopped fluorescein.

	Sample	$H_2PtCl_6 \cdot 6H_2O$	CH ₃ OH	HC1	H ₂ SO ₄	H ₂ O	TEA	TEOA
1	10 mg	5 mg	1.7 mL	7.3 mL				
2	15 mg	5 mg	1 mL		4 mL			
3	10 mg	10 mg	2 mL			9 mL		
4	10 mg	10 mg				9 mL	1 mL	
5	10 mg	10 mg				9.5 mL		0.5 mL

Table S1 Experimental condition of photocatalytic H_2 evolution

 H_2SO_4 : 0.5 mol·L⁻¹

HC1: 0.5 mol·L⁻¹

Sample: FS-AgPW₁₂