Supporting Information

One-step synthesis of MnS/MoS₂/C through calcination and sulfurization of a bi-metal-organic framework for highperformance supercapacitor and its photocurrent investigation

Zhi Shuo Yan,^a Ji Ying Long,^a Qing Feng Zhou,^a Yun Gong,^{*a} and Jian Hua Lin^{*a, b}

^a Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China. *E-mail:* gongyun7211@cqu.edu.cn; Tel: +86-023-65678932.
^b State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. *E-mail:* jhlin@pku.edu.cn; Tel:+86-010-62753541.

Fig. S1 The PXRD pattern of the as-synthesized Mn/Mo-MOF.

Fig. S2 The 3D architecture of the Mn/Mo-MOF highlighting the coordination environment of the Mn and Mo atoms (H atoms omitted for clarity).

Fig. S3 The SEM images of the Mn/Mo-MOF at different magnifications (a, b).

Fig. S4 The TEM images of the MnS/MoS₂/C hybrid at different magnifications (a, b).

(a)

(c)

Fig. S5 The HR-TEM images of the MnS/MoS₂/C hybrid (a-c).

Table S1 The atom % in the $MnS/MoS_2/C$ hybrid before and after the electrochemicalmeasurement.

Atom %	The original sample	After 10000 GCD cycles
Mn	8.3 ^a /6.3 ^b /7.3 ^c	21.3 ^d /17.0 ^e
Мо	9.6 ^a /8.0 ^b /9.1 ^c	0 ^d /0 ^e
S	27.5 ^a /22.4 ^b /24.5 ^c	1.9 ^d /1.3 ^e
С	34.9 ^a /38.9 ^b /36.7 ^c	19.8 ^d /20.5 ^e
0	19.6 ^a /23.0 ^b /22.5 ^c	53.4 ^d /59.0 ^e
N	0 ^a /1.3 ^b /0 ^c	3.7 ^d /2.2 ^e

a-c) The percentages of the atoms are calculated based on the EDS data in **Fig. 3e-g**.

^{c, d)} The percentages of the atoms are calculated based on the EDS data in **Fig. S18a-b**.

Fig. S6 The 2H-(002) (**a**) and 3R-(003) crystalline planes of the MoS_2 (**b**).

Fig. S7 The SAED patterns of the $MnS/MoS_2/C$ hybrid (a, b).

Fig. S8 N₂ adsorption and desorption isotherm curves (**a**) and BJH desorption pore size distribution of the MnS/MoS₂/C hybrid material (**b**).

Fig. S9 The PXRD patterns of the calcined samples under different conditions: in a

two-pot process with different temperatures and molar ratios of MOF/S (**a**); in two-pot (300 °C, MOF/S=1: 14) and one-pot process (200 °C, MOF/S=1: 10) (**b**).

Fig. S10 Raman spectrum of the calcined sample via one-pot method (200 $^{\circ}$ C, MOF/S=1: 10).

(**c**)

Fig. S11 SEM images (**a**); EDS and elemental mappings (**b**, **c**) of the calcined sample via one-pot method (200 °C, MOF/S=1: 10).

Fig. S12 Three-electrode electrochemical measurements for bare Ni foam collector in 2 M KOH aqueous solution: GCD curves (**a**) and comparison with MnS/MoS₂/C

hybrid at discharge current density of 4 A $g^{-1}(\mathbf{b})$.

Fig. S13 Nyquist plots of the $MnS/MoS_2/C$ hybrid material in 2 M KOH at a potential of 0 V vs Hg/HgO.

Fig. S14 SEM images of the commercial activated carbon (AC) (a, b).

Fig. S15 EDS (a) and elemental mappings of the AC (b).

Fig. S16 Raman spectrum of the AC.

(c)

(**d**)

Fig. S17 Three-electrode electrochemical measurements in 2M KOH aqueous solution: CV curves of the AC at various scan rates (**a**) and GCD curves of the AC at various current densities (**b**); specific capacitances at various current densities (**c**) and CV curves at 0.02 V s^{-1} of the MnS/MoS₂/C hybrid and the AC (**d**).

Fig. S18 SEM images of the $MnS/MoS_2/C$ hybrid after 10000 GCD cycles (a, b).

Fig. S19 EDS (top) and the corresponding elemental mappings (bottom) of the $MnS/MoS_2/C$ hybrid after 10000 charge-discharge cycles at two randomly selected regions (**a**, **b**).

(c)

Fig. S20 Three-electrode electrochemical measurements of the $MnS/MoS_2/MoO_3/C$ in 2 M KOH aqueous solution for comparison with $MnS/MoS_2/C$ hybrid (inset) under the same condition: CV curves at various scan rates (**a**); GCD curves (**b**) and specific capacitances (**c**) at various current densities.

Fig. S21 The Nyquist plots (Z' vs -Z") of the three-electrode systems at E = 0 V vs Hg/HgO in 2 M KOH solution in the absence and presence of visible light illumination (350 nm < λ < 650 nm) with the FTO working electrode of the MnS/MoS₂/C hybrid.

Fig. S22 The UV-vis absorption (a) and diffuse reflectance spectra of the $MnS/MoS_2/C$ hybrid in Kubelka-Munk functions (b).

The diffuse reflectance spectra of the MnS/MoS₂/C hybrid are shown in **Fig. S20b**. The relationship between the absorption coefficient and band gap E_{gap} was determined by the equation:

$$[hvF(R)]^{1/2} = A[hv-E_{gap}]$$

Where *hv* is the photon energy, A is a constant, F(R) is the Kubelka-Munk equation and $F(R) = (1-R)^2/2R$, in which *R* is the experimental value in reflectance of the sample.

According to the plot of $[hvF(R)]^{1/2}$ vs hv, the value of band gap E_{gap} of the sample can be obtained by extrapolating the linear fitted region to $[hvF(R)]^{1/2} = 0$.

(a)

Fig. S23 Band structure (a) and the total density of states (TDOS) of the cubic MnS.

(b). The Fermi level is set to zero

Fig. S24 Band structure (**a**) and TDOS of the spin-polarized cubic MnS (**b**). The blue and red curves correspond to the spin up and down bands, respectively. The Fermi level is set to zero.

Fig. S25 Band structure (a) and TDOS as well as PDOS of the hexagonal MoS_2 . In the PDOS, blue, red and green lines represent s, p and d orbits, respectively (b). The Fermi level is set to zero.

Table S2 The electrochemical performance comparisons of MnS/MoS2/C hybrid with other Mn/Mo sulfides based materials.

No.	Electrode material	Electrochemi cal testing condition (Three- electrode configuratio n)	Electrolyte	Specific capacitance	Reference
1	2D-MnS nanosheets	$\begin{array}{c} \text{GCD} \text{at} 0.5 \\ \text{A} \text{ g}^{-1} \end{array}$	2.0 M KOH	344.5 F g ⁻¹	1
2	TP-NR MnS	CV at 1mV s ⁻¹	2.0 M KOH	704.5 F g ⁻¹	2
3	MnS/GO	GCD at 0.25 A g ⁻¹	2.0 M KOH	390.8 F g ⁻¹	3

4	MnS microfibers	CV at 5mV s ⁻¹	1.0 M KOH	538.5 F g ⁻¹	4
5	γ-MnS/rGO composite	GCD at 5 A g ⁻¹	polysulfide electrolyte	802.5 F g ⁻¹	5
6	Bulk MoS ₂	$\begin{array}{c} \text{GCD} \text{at} 0.5 \\ \text{A} \ \text{g}^{-1} \end{array}$	Organolithiu m intercalators	2.5 F g ⁻¹	6
7	MoS ₂ nanosheets	GCD at 0.5 A g ⁻¹	1.0 M Na ₂ SO ₄	92.8 F g ⁻¹	7
8	MoS ₂ -carbon composite	GCD at 0.5 A g ⁻¹	1.0 M Na ₂ SO ₄	201.4 F g ⁻¹	8
9	1T/2H Hybrid MoS ₂	GCD at 1 A g ⁻¹	2.0 M KOH	346.0 F g ⁻¹	9
10	1T-2H MoS ₂ /rGO	GCD at 1 A g ⁻¹	1.0 M NaCl	416.0 F g ⁻¹	10
11	MoS ₂ nanosheets with Co ₃ O ₄	$\begin{array}{c} GCD at 0.5 \\ A \ g^{-1} \end{array}$	1.0 M KOH	69.0 F g ⁻¹	11
12	Ni_3S_4 -MoS ₂ heterojunctio n	GCD at 1 A g ⁻¹	3.0 M KOH	985.2 F g ⁻¹	12
13	MnS/MoS ₂ / C hybrid	GCD at 1 A g ⁻¹	2.0 M KOH	1120 F g ⁻¹	This work

References

- 1 M. Li, J. Liang, Y. Chai, D. L. Li, J. X. Lu and L. Li, *MICRO & NANO LETTERS*, 2017, **12**, 735-737.
- 2 Y. F. Tang, T. Chen and S. X. Yu, *Chem. Commun.*, 2015, **51**, 9018-9021.
- 3 Y. F. Tang, T. Chen, S.X. Yu, Y. Q. Qiao, S. C. Mu, J. Hua and F. M. Gao, J. *Mater. Chem. A*, 2015, **3**, 12913-12919.
- 4 R.B. Pujari, A.C. Lokhande, A.A. Yadav, J.H. Kim, C.D. Lokhande, *Materials and Design*, 2016, **108**, 510-517.
- 5 X. F. Li, J. F. Shen, N. Li and M. X. Ye, J. Power Sources, 2015, 282, 194-201.
- 6 C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer and M. Pumera, *Electrochem. Commun.*, 2015, **56**, 24-28.
- 7 K. Karthikeyan, V. Ganesh Kumar, R. Sivaprakasam and S. J. Kim, *Mater. Res. Bull.*, 2014, **50**, 499-502.
- 8 L. Fan, G. Liu, C. Zhang, J. Wu and Y. Wei, *Int. J. Hydrogen Energy*, 2015, 40, 10150-10157.
- 9 D. Z. Wang, Y. Y. Xiao, X. N. Luo, Z. Z. Wu, Y. J.Wang and Baizeng Fang, ACS Sustainable Chem. Eng. 2017, 5, 2509-2515.
- 10 A. Gigot, M. Fontana, M. Serrapede, M. Castellino, S. Bianco, M. Armandi, B. Bonelli, C. F. Pirri, E. Tresso and P. Rivolo, ACS Appl. Mater. Interfaces 2016, 8, 32842-32852.

- 11 D. Lianga, Z. Tiana, J. Liu, Y. Ye, S. Wu, Y. Cai and C. Liang, *Electrochim. Acta*, 2015, **182**, 376-382.
- 12 W. H Luo, G. F. Zhang, Y. X. Cui, Y. Sun, Q. Qin, J. Zhang and W. J. Zheng, J. Mater. Chem. A, 2017, 5, 11278-11285.