Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Small Molecule Activation of Nitriles Coordinated to the [Re₆Se₈]²⁺ Core: Formation of Carboxamide, Oxazine and Oxazoline Complexes

Colleen P. Chin, YiXin Ren, Joan Berry, Stanley A. Knott, Craig C. McLauchlan, Lisa F. Szczepura*

Department of Chemistry, Illinois State University, Normal, IL 61790-4160

Figure S1. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in the room temperature UV-irradiation of 3^{2+} in CD₃CN.

Figure S2. 500 MHz ¹H NMR spectral data of samples taken at different time intervals in the room temperature UV-irradiation of 3^{2+} in CD₃CN.

Figure S3. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in the room temperature UV-irradiation of 4^{2+} in CD₃CN.

Figure S4. 500 MHz ¹H NMR spectral data of samples taken at different time intervals in the room temperature UV-irradiation of 4^{2+} in CD₃CN.

Figure S5. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in the room temperature UV-irradiation of 5^{2+} in CD₃CN.

Figure S6. 500 MHz ¹H NMR spectral data of samples taken at different time intervals in the room temperature UV-irradiation of 5^{2+} in CD₃CN.

Figure S7. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in the heating of $\mathbf{3}^{2+}$ in CD₃CN (no reaction occurred).

Figure S8. 500 MHz ¹H NMR spectral data of samples taken at different time intervals in the heating of 3^{2+} in CD₃CN (no reaction occurred).

Figure S9. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in the heating of 4^{2+} in CD₃CN.

Figure S10. 500 MHz ¹H NMR spectral data of samples taken at different time intervals in the heating of 4^{2+} in CD₃CN.

Figure S11. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in the heating of 5^{2+} in CD₃CN.

Figure S12. 500 MHz ¹H NMR spectral data of samples taken at different time intervals in the heating of 5^{2+} in CD₃CN.

Figure S13. Displacement ellipsoid plot (50%) of $5(BF_4)_2$ showing the full disordered model of 5^{2+} and the crystallographically unique BF_4^- .

Figure S14. Displacement ellipsoid plot (50%) of 7(BF₄).

Figure S15. Space filling diagram of 5²⁺.

Figure S16. UV-vis spectrum of $[Re_6Se_8(PEt_3)_5(2-methyloxazine)](SbF_6)_2$ (**5(SbF_6)_2**) in CH₃CN with a concentration of 1.58x10⁻⁵ M.

Figure S1. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in room temperature the UV-irradiation of 3^{2+} in CD₃CN.

Figure S2. 500 MHz ¹H NMR spectral data of samples taken at different time intervals in the room temperature UV-irradiation of 3^{2+} in CD₃CN.

temperature UV-irradiation of 4^{2+} in CD₃CN.

Figure S5. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in the room temperature UV-irradiation of 5^{2+} in CD₃CN.

Figure S6. 500 MHz ¹H NMR spectral data of samples taken at different time intervals in the room temperature UV-irradiation of 5^{2+} in CD₃CN.

Figure S7. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in the heating of $\mathbf{3}^{2+}$ in CD₃CN (no reaction occurred).

Figure S8. 500 MHz ¹H NMR spectral data of samples taken at different time intervals in the heating of 3^{2+} in CD₃CN (no reaction occurred).

Figure S9. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in the heating of 4^{2+} in CD₃CN.

Figure S10. 500 MHz ¹H NMR spectral data of samples taken at different time intervals in the heating of 4^{2+} in CD₃CN.

Figure S11. 202.5 MHz ³¹P {¹H} NMR spectral data of samples taken at different time intervals in the heating of 5^{2+} in CD₃CN.

C23s

Figure S14. Displacement ellipsoid plot (50%) of 7(BF₄).

Figure S15. Space filling diagram of 5^{2+} .

Figure S16. UV-vis spectrum of $[Re_6Se_8(PEt_3)_5(2-methyloxazine)](SbF_6)_2$ (**5(SbF_6)_2**) in CH₃CN with a concentration of 1.58×10^{-5} M.