Electronic Supplementary Information

Metal-organic frameworks derived hierarchical nickelcobalt sulfide nanosheets array on Ni foam with enhanced electrochemical performance for supercapacitor

Kai Tao,^{a,b*} Xue Han^a, Qingxiang Ma^b and Lei Han^{a*}

^a School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

^b State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P.R. China.

*Corresponding Authors

Email: taokai@nbu.edu.cn (K. Tao), Email: hanlei@nbu.edu.cn (L. Han).

Figure S1. Digital photograph of the NF, Co-MOF/NF, Ni-Co LDH/NF and Ni-Co-

S/NF (from left to right).

Figure S2. XRD patterns of Co-MOF/NF, Ni-Co LDH/NF and Ni-Co-S/NF.

Figure S3. FTIR spectra of Co-MOF, Ni-Co LDH and Ni-Co-S scraped off from Ni foam.

Figure S4. EDX pattern of Ni-Co-S nanosheet.

Figure S5. Characterizations of CoS/NF electrode. (a) XRD, (b) SEM image and (c) EDX pattern.

Figure S6. Electrochemical performance of CoS/NF electrode. (a) CV curves at different scan rates and (b) GCD curves at various current densities.

Figure S7. Nyquist plots of Ni-Co-S/NF and CoS/NF.

Figure S8. (a) CV curves of AC electrode at different sweep rates, (b) GCD curves of AC electrode at various current densities, and (c) the corresponding specific capacitance of AC electrode calculated by the GCD curves.

Figure S9. (a) CV curves of the Ni-Co-S and AC electrodes tested at a scan rate of 10 mV/s in a three-electrode mode, and (b) CV curves of ASC device at different voltage windows with scan rate of 10 mV s⁻¹.

Electrode materials	Specific	Current	Reference
	capacitance	density	
Ni-Co-S/NF	1406.9 F g ⁻¹	0.5 A g ⁻¹	This work
	1202.5 F g ⁻¹	1 A g ⁻¹	This work
Ni _x Co _{1-x} S _{1.097} microspheres	867 F g ⁻¹	0.5 Å g ⁻¹	1
$Ni_3S_2@Co_9S_8$	600 F g^{-1}	$0.5 \mathrm{~A~g^{-1}}$	2
Ni _x Co _{3-x} S ₄ hollow	895 F g ⁻¹	$1 \mathrm{A} \mathrm{g}^{-1}$	3
nanoprisms			
NiCo ₂ S ₄ ball-in-ball hollow	1036 F g^{-1}	$1 \mathrm{A} \mathrm{g}^{-1}$	4
spheres			
NiCo ₂ S ₄ hollow hexagonal	$437 \ F \ g^{-1}$	$1 \mathrm{A} \mathrm{g}^{-1}$	5
plates			
NiCo ₂ S ₄ nanostructured	1154.4 F g ⁻¹	1 A g^{-1}	6
arrays			
NiCo ₂ S ₄ porous nanotubes	933 F g ⁻¹	1 A g^{-1}	7
Mesoporous NiCo ₂ S ₄	1296 F σ ⁻¹	1 Δ σ ⁻¹	8
polyhedron	12901 5	1115	0
3D honeycomb-like NiCo ₂ S ₄	1168 F g ⁻¹	1 A g^{-1}	9
NiCo ₂ S ₄ /N,S doped multiple	822 6 E g ⁻¹	$1 \Lambda \sigma^{-1}$	10
graphene aerogel	022.0 I g	IAg	10

Table S1. Electrochemical performance of representative nickel cobalt based sulfide
 electrodes.

References

- [1] Y. Gao, L. Mi, W. Wei, S. Cui, Z. Zheng, H. Hou, W. Chen, ACS Appl. Mater. Interfaces 7 (2015) 4311-4319.
- [2] W. Chen, C. Xia, H.N. Alshareef, ACS Nano 8 (2014) 9531-9541.
- [3]L. Yu, L. Zhang, H.B. Wu, X.W.D. Lou, Angew. Chem. Int. Ed. 53 (2014) 3785-3788.
- [4]L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W.D. Lou, Nat. Commun. 6 (2015) 6694.
- [5]J. Pu, F. Cui, S. Chu, T. Wang, E. Sheng, Z. Wang, ACS Sustainable Chem. Eng. 2 (2014) 809-815.
- [6] X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Nano Energy 16 (2015) 71-80.
- [7] H. Z. Wan, J. J. Jiang, J. W. Yu, K. Xu, L. Miao, L. Zhang, H. C. Chen, Y. J. Ruan, CrystEngComm 15 (2013) 7649–7651.
- [8] Y. Liu Z. Wang, Y. Zhong, M. Tade, W. Zhou, Z. Shao, Adv. Funct. Mater. 27 (2017) 101229-1701238.
- [9] H. Fan, W. Liu, W. Shen, Chem. Eng. J. 326 (2017) 518-527.
- [10] T. T. Yang, R. Y. Li, Z. J. Li, Z. G. Gu, G. L. Wang, J. K. Liu, Electrochim. Acta 211 (2016) 59–70.