Supporting Information

Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts**

Haiqing Zhou, Fang Yu, Yuanyue Liu, Jingying Sun, Zhuan Zhu, Ran He, Jiming Bao, William A. Goddard III, Shuo Chen^{*}, Zhifeng Ren^{*}

* Correspondence and requests for materials should be addressed to S. C. schen34@uh.edu or Z. F. R. zren@uh.edu.

1. Methods

Material synthesis. The commercially purchased Ni foam was cut into small pieces with an area of 1 cm², which were then immersed into the PVP/HAc solution (0.1 g PVP in 5 ml HAc) for several seconds. After drying it slowly, they were placed in the center of a tube furnace, followed by direct selenization at 600 °C for 1h in Ar atmosphere with the Se powder placed at the upstream as Se source.

Electrochemical tests. Electrochemical tests were carried out in a N₂-saturated three-electrode system (Gamry, Reference 600),^{1,2} where a saturated calomel electrode was used as the reference electrode, a Pt wire as the counter electrode and as-prepared NiSe₂ foams directly as the working electrode. To exclude the possible contribution of any Pt contamination to the catalytic performance, we performed similar measurements using a graphite foil (Alfa Aesar) as the counter electrode, and XPS analysis on several positions of the catalyst surface, where no Pt signals are found on post-HER catalysts.

50-100 potential sweeps between 0.07 V to -0.20 V vs. reversible hydrogen electrode (RHE) at a scan rate of 50 mV/s were applied to electrochemically activate the catalysts prior to the HER measurements and for studying the electrochemical stability. The electrochemical impedance spectroscopy curves were collected at a potential of -0.14 V vs. RHE in the same device configuration by tuning the frequency from 10 mHz to 1 MHz with a 10 mV AC dither.

Computational methods. To identify the active site for HER, we performed Density Functional Theory (DFT) calculations using the Vienna Ab-initio Simulation Package (VASP)^{3,4} with projector augmented wave (PAW) pseudopotentials^{5,6} and the Perdew-Burke-Ernzerhof (PBE) exchangecorrelation functional.⁷ We used 400 eV for the plane-wave cutoff, and fully relaxed the systems until the final force on each atom is less than 0.01 eV/Å. We have doubled checked the free energies of H adsorption on perfect surface and vacancy-containing surfaces using 500 eV, and found the values differ by < 10 meV. We used a slab of 2×2 surface supercell, with a thickness of 4 stoichiometric layers, and 5×5×1 Monkhorst-Pack k-points sampling.⁸ Following the approach of Ref. 9 and 10, the free energy of hydrogen adsorption (ΔG_{H^*}) is calculated as $\Delta G_{H^*} = E_{ad} + \Delta E_{ZP} + TS$, where E_{ad} is the adsorption energy of H onto the surface, referenced to the 1/2 of energy of the H₂ moleccule (see below), E_{ZP} is the difference in zero point energy between the adsorbed H and the H₂ moleccule, T is the room temperature, and S is the 1/2 entropy of H₂ molecule at standard conditions. The adsorption energy E_a is calculated as $E_a = E(H+surface) - E(surface) - E(H_2)/2$, where E(H+surface), E(surface) and $E(H_2)$ are the energies of H-adsorbed surface, pure surface, and an H₂ molecule, respectively.

2. SEM morphologies of porous NiSe₂ catalyst from original Ni foam

Figure S1. Low and high-magnification SEM images of as-prepared NiSe₂ foam from commercial Ni foam without any treatment.

3. Energy dispersive X-ray spectrum (EDS) of as-grown NiSe₂ catalyst

Figure S2. a, Elemental EDS mapping of Ni (yellow) and Se (purple) elements in the same image. **b**, Original EDS analysis on the chemical composition of as-prepared NiSe₂ foam from HAc and PVP cotreated Ni foam under TEM.

4. XPS spectra of different as-prepared NiSe₂ catalysts

Figure S3. XPS spectra of different NiSe₂ foams.

5. Comparison of the catalytic performance of HP-NiSe₂ catalysts between Pt and graphite foil counter electrode

Figure S4. The polarization curves of the HP-NiSe₂ catalysts when using Pt or graphite foil as counter electrode. No obvious differences are detected during the measurements.

6. The summary of the catalytic performance for porous NiSe₂ catalysts

Table S1. The main performance parameters of different NiSe₂ foams in comparison with a Pt wire investigated in Figure 3. Here $j_{0,,\eta_{10}}$ and η_{100} are corresponding to the exchange current density, the potentials vs RHE at 10 mA cm⁻², and 100 mA cm⁻², respectively.

Catalyst	Tafel slope	jo	η10	η ₁₀₀
A-NiSe ₂	46.0 mV dec ⁻¹	8.6 μA cm ⁻²	153 mV	200 mV
H-NiSe ₂	42.6 mV dec ⁻¹	64.6 μA cm ⁻²	107 mV	153 mV
HP-NiSe ₂	43.0 mV dec ⁻¹	612.0 μA cm ⁻²	57 mV	103 mV
Pt wire	31.0 mV dec ⁻¹	1126.2 μA cm ⁻²	32 mV	72 mV

7. The comparison of our catalystswith other reported cheap electrocatalysts

Table S2. The comparison on the HER performance of our catalysts with other available cheap HER electrocatalysts in the literatures. These values j_0 , η_{10} , and η_{100} represent the exchange current density, the potentials vs RHE at 10 mA/cm² and 100 mA/cm², respectively.

Catalyst Tafel slope	η 10	η 100	j ₀	Source
----------------------	-------------	--------------	----------------	--------

Benchmark Pt	31.0 mV dec ⁻¹	32 mV	72 mV	1126.2 μA cm ⁻²	This work
HP-NiSe ₂ foam	43.0 mVdec ⁻¹	57 mV	103 mV	612.0 μA cm ⁻²	This work
MoS _{2(1-x)} Se _{2x} /NiSe ₂	42.0 mVdec ⁻¹	69 mV	112 mV	299.4 μA cm ⁻²	2
MoS _x /N-CNT	40 mVdec ⁻¹	110 mV	225 mV	33.1 μA cm ⁻²	11
NiSe ₂ nanosheets/CC	32 mVdec ⁻¹	117 mV	NA	4.7 μA cm ⁻²	12
CoS ₂ /RGO-CNT	51 mVdec ⁻¹	142 mV	178 mV	62.6 μA cm ⁻²	13
FeS ₂ nanosheets	46 mVdec ⁻¹	108 mV	170 mV	5.5 μA cm ⁻²	14
CoSe ₂ /carbon fiber	42 mVdec ⁻¹	139 mV	184 mV	6μA cm ⁻²	15
WS _{1.56} Se _{0.44} nanoribbons	68 mVdec ⁻¹	176 mV	NA	25 μA cm ⁻²	16
Ni ₅ P ₄ -Ni ₂ P nanosheets	79 mVdec ⁻¹	120 mV	200 mV	116 μA cm ⁻²	17
Ni ₂ P nanoparticles	46 mVdec ⁻¹	105 mV	180 mV	33 μA cm ⁻²	18
CoP nanowire array/CC	51 mVdec ⁻¹	67 mV	204 mV	288 μA cm ⁻²	19
Mo-W-P nanosheets/CC	52 mVdec ⁻¹	100 mV	138 mV	288 μA cm ⁻²	20
Metallic WO ₂ /carbon	46 mVdec ⁻¹	58 mV	NA	640 μA cm ⁻²	21
MoO ₂ /PC-RGO	41 mVdec ⁻¹	64 mV	NA	480 μA cm ⁻²	22
CoPS NPls/carbon paper	56 mVdec ⁻¹	48 mV	NA	984 μA cm ⁻²	23
CoPS NWs/carbon paper	48 mVdec ⁻¹	61 mV	NA	554 μA cm ⁻²	23
MoS ₂ /N-RGO	41.3 mVdec ⁻¹	56 mV	NA	720 μA cm ⁻²	24

NA: not provided in the data.

8. Double-layer capacitance measurements

Figure S5. Electrochemical cyclic voltammetry curves of different NiSe₂ foams with different scan rates. **a**, A-NiSe₂ foam with scan rates ranging from 20 mV/s to 200 mV/s with a step of 20 mV/s. **b**, H-NiSe₂ foam with scan rates from 5 mV/s to 50 mV/s with a 5 mV/s interval. **c**, HP-NiSe₂ foam with scan rates ranging from 2 mV/s to 20 mV/s with an interval point of 2 mV/s. The potential is scanned from 0.1 to 0.2 V vs RHE where no faradic current was detected.

9. Electrical conductivity measurements of bulk NiSe₂ crystals

Figure S6. (a) XRD pattern and (b) electrical resistivity measurements of a bulk NiSe₂ sample prepared by mechanical alloying of high-purity Ni and Se powders by a high-energy ball mill (SPEX 8000D) for 20 h and hot pressing at 773 K for 2 min.

10. Data for Fig. 4 and structure of the NiSe₂ slab (in VASP CONTCAR format)

	perfect	V-Ni	V-Se	V-2Se	ad-Ni	ad-Se	ad-2Se
Free	0.68	0.39	0.38	0.47	0.71	0.09	-0.01
energy(eV/H)							

NiSe₂

11.87	1999999999999	9999	0.0000000000	000000	0.0000)000000)0000	000
0.00	000000000000000000000000000000000000000	0000	11.8719999999	999999	0.0000)000000)0000	000
0.00	000000000000000000000000000000000000000	0000	0.000000000	000000	20.0000	000000)0000	000
Ni	Se							
32	64							
Selective of	lynamics							
Direct								
0.00666	7599352288	6 -0.0004	355373005453	0.2999	60072709	90445	Т	TT
-0.00015	73366221758	0.996	479502828482	1 0.5978	88255278	90403	Т	TT
0.24990	1217791749:	5 -0.0031	784384313857	0.4442	51186049	97020	Т	TT
0.2567799	758378674	0.99865	16520039094	0.74210	57312696	5081	Т	TT
0.2432973	852295297	0.24957	47208374209	0.299969	97633520)752	Т	TT
0.2501173	976560165	0.24646	63422859265	0.59789	50253180)432	Т	TT
0.0000848	300246491	0.24680	96293625826	0.44425	50960502	2816	Т	TT
0.9931873	788988308	0.24863	66513258388	0.74210	53277570)332	Т	TT
0.0067043	028102850	0.49957	37853818545	0.29993	53701053	3446	Т	TT
-0.00012	98464554059	0.496	4721527274584	4 0.5978	87966961	35562	Т	TT
0.2498971	985875931	0.49681	45778524392	0.444244	49734775	5105	Т	TT
0.2568089	549908256	0.49863	35901639650	0.74209	10833837	7595	Т	TT
0.2433021	255599140	0.74961	88376144860	0.299964	41487087	7098	Т	TT
0.2501027	529849907	0.74647	64389217743	0.597884	44609956	6306	Т	TT
0.0000917	638536297	0.74682	15031264130	0.444246	60897100)310	Т	TT
0.9931762	041351612	0.74866	65555319038	0.742094	49265791	846	Т	TT
0.50670	6433961643	5 -0.0004	266420373065	0.2999	53671107	75301	Т	TT
0.4998460	786650789	0.99646	52581750038	0.59788	64022950)832	Т	TT
0.74991	0286514986	1 -0.0031	877719648247	0.4442	44363314	47298	Т	TT
0.7567804	537390733	0.99865	01639412766	0.742103	33000407	7599	Т	TT
0.7432972	336757780	0.24956	46864052058	0.299953	35705460)435	Т	TT
0.7501171	792452987	0.24648	16160993655	0.597892	22480052	2052	Т	TT

0.5000968095526603	0.2468125008092458	0.4442432347618467	Т	ΤT
0.4931954618372723	0.2486353002224210	0.7421012516904474	Т	ΤT
0.5066639486845046	0.4995791564660371	0.2999554306212046	Т	TT
0.4998591017430232	0.4964796890511174	0.5978810304384220	Т	TT
0.7499048370558340	0.4968222699209380	0.4442457222550898	Т	TT
0.7567820392772402	0.4986481314187219	0.7420953472505711	Т	TT
0.7433184301608693	0.7495736242801179	0.2999393646666617	Т	TT
0.7501097081881132	0.7464520642833561	0.5978715305711257	Т	ΤT
0.5001204646828332	0.7468298456148145	0.4442425102431442	Т	TT
0.4931954578915905	0.7486381865746357	0.7421035469802468	Т	TT
0.1907927969786359	0.1880541082591476	0.4117010696567121	Т	TT
0.1901240492343139	0.1910094273591115	0.7214824237164089	Т	TT
0.0654943068864851	0.3201315201670959	0.2563990355433776	Т	TT
0.0616483255181409	0.3089730156614333	0.5607428114751568	Т	TT
0.4382734752528953	0.0591782693844061	0.4813546495431387	Т	TT
0.4345344224450297	0.0693235887129809	0.7857177870107539	Т	TT
0.3098055216515955	0.4418072382557047	0.3206788003882028	Т	TT
0.3091934879496128	0.4375878979398209	0.6304944851914969	Т	TT
0.3117391337281156	0.3091985459275519	0.4813517223413623	Т	TT
0.3154304176215944	0.3193094517882245	0.7857234113765283	Т	TT
0.4401632965040815	0.1918024362855373	0.3206766445655260	Т	TT
0.4408151279048972	0.1875763918870014	0.6304884411473085	Т	ΤT
0.0591931825569547	0.4380453468232652	0.4116952597259013	Т	ΤT
0.0598582551509802	0.4410091579621155	0.7214731202646336	Т	ΤT
0.1845089154489411	0.0701504821939064	0.2564412920472130	Т	ΤT
0.1883227815738421	0.0589622981282898	0.5607504511263314	Т	ΤT
0.1907845473173868	0.6880422699905895	0.4116918424394442	Т	TT
0.1901017132084825	0.6909583376680670	0.7214708668304328	Т	ΤT
0.0655054031783750	0.8201360171669303	0.2564570429851847	Т	TT
0.0616281092922571	0.8089659038567116	0.5607537832990638	Т	TT
0.4382679532654134	0.5591487870953404	0.4813592356828884	Т	TT
0.4345601618797899	0.5693021905892026	0.7857130462359814	Т	TT
0.3098389000428427	0.9418020752203080	0.3206971924977297	Т	TT
0.3091606441510620	0.9376046176444035	0.6304731045066628	Т	ΤT
0.3117338346394587	0.8091688834998868	0.4813540871290615	Т	TT
0.3154175588899016	0.8193016184854949	0.7857164804727512	Т	TT
0.4401799252041339	0.6918290029186221	0.3206988409518404	Т	TT
0.4407904428212158	0.6875988957005982	0.6304696779245298	Т	TT
0.0591888657781381	0.9380713428028414	0.4116970084732689	Т	TT
0.0598580685411532	0.9410167134243548	0.7214723815480248	Т	TT
0.1845386031740807	0.5701442117764831	0.2564067193881803	Т	TT
0.1883295214683958	0.5589669181277239	0.5607573572598141	Т	ΤT
0.6907903039682503	0.1880586417204357	0.4116867631148922	Т	TT
0.6901334886223732	0.1909827088446823	0.7214841925142834	Т	TT

0.5654844178423125	0.3201250622804722	0.2564049463806853	Т	TT
0.5616447910445674	0.3089588160885678	0.5607510506675475	Т	TT
0.9382614956887729	0.0591600588299648	0.4813632082713937	Т	TT
0.9345704151888586	0.0693059465126342	0.7857099229220765	Т	TT
0.8098323496788763	0.4417948675768673	0.3206749013780870	Т	TT
0.8092131232492673	0.4375884051035964	0.6304774596008289	Т	TT
0.8117227373637743	0.3091650971237694	0.4813512999135273	Т	TT
0.8154390960495758	0.3193053949275121	0.7857191884930221	Т	TT
0.9401735469030668	0.1918165242740675	0.3206803107843350	Т	TT
0.9407802795686209	0.1875980880700108	0.6304705262947893	Т	TT
0.5591895258608022	0.4380254619596619	0.4116906921646882	Т	TT
0.5598749638151488	0.4409617888717802	0.7214651306412450	Т	TT
0.6845155943607977	0.0701521541125364	0.2563890928069552	Т	TT
0.6883245108402770	0.0589609389730473	0.5607606985175621	Т	TT
0.6907928027439331	0.6880434905669380	0.4116849724032006	Т	TT
0.6901220056106002	0.6909645776734742	0.7214729440377659	Т	TT
0.5655001000555500	0.8201455096499601	0.2564192727345181	Т	TT
0.5616450033776776	0.8089754943179465	0.5607444708306982	Т	TT
0.9382712819849818	0.5591628963709566	0.4813532242279144	Т	TT
0.9345439569257222	0.5693333761092404	0.7857059193933913	Т	TT
0.8098414292983948	0.9417958949554656	0.3206489539350427	Т	TT
0.8091619346508335	0.9375940438711092	0.6304768472966098	Т	TT
0.8117526509632023	0.8091401843513990	0.4813513926163112	Т	TT
0.8154230525620177	0.8193016496835899	0.7857164528301454	Т	TT
0.9401905271530422	0.6917975698632581	0.3206757459046545	Т	TT
0.9407868164150627	0.6875933064051533	0.6304707395936480	Т	TT
0.5592080123492229	0.9380657619104064	0.4116782894191566	Т	TT
0.5598618224287812	0.9410138190517696	0.7214843827920081	Т	TT
0.6844921077911069	0.5701213795585953	0.2564245044986694	Т	TT
0.6883318078720868	0.5589735181576025	0.5607544276187836	Т	TT

References:

- H. Q. Zhou, Y. M. Wang, R. He, F. Yu, J. Y. Sun, F. Wang, Y. C. Lan, Z. F. Ren and S. Chen, *Nano Energy*, 2016, 20, 29-36.
- 2 H. Q. Zhou, F. Yu, Y. F. Huang, J. Y. Sun, Z. Zhu, R. J. Nielsen, R. He, J. M. Bao, W. A. Goddard III,
 S. Chen and Z. F. Ren, *Nat. Commun.*, 2016, 7, 12765.
- 3 G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, **47**, 558-561.

- 4 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 5 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 6 P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 7 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 8 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff and J. K. Nørskov, J. Am. Chem. Soc., 2005, 127, 5308-5309.
- 10 J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, J. *Electrochem. Soc.*, 2005, **152**, J23-J26.
- 11 D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee and S. O. Kim, *Nano Lett.*, 2014, 14, 1228-1233.
- 12 F. M. Wang, Y. C. Li, T. A. Shifa, K. L. Liu, F. Wang, Z. X. Wang, P. Xu, Q. S. Wang and J. He, *Angew. Chem. Int. Ed.*, 2016, **55**, 6919-6924.
- 13 S. J. Peng, L. L. Li, X. P. Han, W. P. Sun, M. Srinivasan, S. G. Mhaisalkar, F. Y. Cheng, Q. Y. Yan, J. Chen and S. Ramakrishna, *Angew. Chem. Int. Ed.*, 2014, **126**, 12802-12807.
- 14 D. Y. Wang, M. Gong, H. L. Chou, C. J. Pan, H. A. Chen, Y. Wu, M. C. Lin, M. Guan, J. Yang, C. W. Chen, Y. L. Wang, B. J. Hwang, C. C. Chen and H. J. Dai, *J. Am. Chem. Soc.*, 2015, **137**, 1587-1592.
- 15 D. S. Kong, H. T. Wang, Z. Y. Lu and Y. Cui, J. Am. Chem. Soc., 2014, 136, 4897-4900.
- 16 F. M. Wang, J. S. Li, F. Wang, T. A. Shifa, Z. Z. Cheng, Z. X. Wang, K. Xu, X. Y. Zhan, Q. S. Wang,
 Y. Huang, C. Jiang and J. He, *Adv. Funct. Mater.*, 2015, 25, 6077-6083.
- 17 X. G. Wang, Y. V. Kolen'ko, X. Q. Bao, K. Kovnir and L. F. Liu, Angew. Chem. Int. Ed., 2015, 54, 8188-8192.

- 18 E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, *J. Am. Chem. Soc.*, 2013, **135**, 9267-9270.
- 19 J. Q. Tian, Q. Liu, A. M. Asiri and X. P. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 20 X. D. Wang, Y. F. Xu, H. S. Rao, W. J. Xu, H. Y. Chen, W. X. Zhang, D. B. Kuang and C. Y. Su, *Energy Environ. Sci.*, 2016, 9, 1468-1475.
- 21 R. Wu, J. F. Zhang, Y. M. Shi, D. L. Liu and B. Zhang, J. Am. Chem. Soc., 2015,137, 6983-6986.
- 22 Y. J. Tang, M. R. Gao, C. H. Liu, S. L. Li, H. L. Jiang, Y. Q. Lan, M. Han and S. H. Yu, *Angew. Chem. Int. Ed.*, 2015, **54**, 12928-12932.
- M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H.
 He and S. Jin, *Nat. Mater.*, 2015, 14, 1245-1251.
- 24 Y. J. Tang, Y. Wang, X. L. Wang, S. L. Li, W. Huang, L. Z. Dong, C. H. Liu, Y. F. Li and Y. Q. Lan, *Adv. Energy Mater.*, 2016, 6, 1600116.