Supporting Information

Insights into the Structural Effects of Layered Cathode Materials for High Voltage Sodium-ion Batteries

Gui-Liang Xu,¹ Rachid Amine,^{2, 3} Yue-Feng Xu,⁴ Jianzhao Liu,^{1,5} Jihyeon Gim, ¹ Tianyuan Ma,^{1, 6} Yang Ren,⁷ Cheng-Jun Sun,⁷ Yuzi Liu,⁸ Xiaoyi Zhang,⁷ Steve M. Heald,⁷ Abderrahim Solhy, ⁹ Ismael Saadoune,¹⁰ Wenjuan Liu Mattis,¹¹ Shi-Gang Sun,⁴ Zonghai Chen^{1,*} and Khalil Amine^{1,*}

¹Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA

² Chemical Engineering Department, University of Illinois at Chicago, Chicago, Illinois 60607, USA

³ Materials Science Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA

⁴Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, China

⁵Department of Chemistry, Virginia Tech, 900 W Campus Drive, Blacksburg, VA 24061, USA

⁶ Materials Science Program, University of Rochester, Rochester, NY 14627, USA ⁷X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

⁸Center for Nanoscale Materials, Nanoscience Technology, Argonne National Laboratory, Lemont, IL 60439, USA

⁹Center for Advanced Materials, Mohammed VI Polytechnic University, Ben Guerir, Morocco

¹⁰ Materials Science and Nano-engineering Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco

¹¹ Microvast Inc., 12603 Southwest Freeway, Stafford, Texas 77477, USA

To whom correspondence should be addressed:

Email: zonghai.chen@anl.gov (Z.C.) and amine@anl.gov (K.A.)

Materials	Rate,	1 st	1 st charge	Last	Voltage	Ref.
	mA/g	coulombic	Capacity,	Capacity,	Range, V	
		efficiency	mAh/g	mAh/g		
P2/O1/O3-Na _x Ni _{1/3} Co _{1/3} Mn _{1/3} O ₂	15	95%	150.3	133/50 th	2.0-4.4	This work
P2/O1/O3-Na _x Ni _{1/3} Co _{1/3} Mn _{1/3} O ₂	100	87.5%	143.6	100/100 th	2.0-4.4	This work
O3-NaNi _{1/3} Co _{1/3} Mn _{1/3} O ₂	12	72%	156	112.3/1 st	2.0-4.2	Chem. Mater.
						2012, 24, 1846-
						1853.
O3-NaNi _{0.5} Mn _{0.5} O ₂	8	74%	250	25/26 th	2.0-4.5	Inorg. Chem.,
						2012, 51, 6211-
						6220
Fe-doped	12	95%	136	125/30 th	2.0-4.0	ACS Appl. Mater.
O3 NaFe _{0.2} Ni _{0.4} Mn _{0.4} O ₂						Interf. 2015, 7,
						8585-8591
O3 NaTi _{0.5} Ni _{0.5} O ₂	20	87%	117	93/100 th	2.0-4.0	Chem. Commun.,
						2014, 50, 457-
						459
Li-doped O3	25	81.2%	181	128/50 th	1.5-4.5	Electrochem.
NaLi _{0.07} Ni _{0.26} Mn _{0.4} Co _{0.26} O ₂						Commun.
						2015, 60, 13-16.
P3-Na_{0.5}Li_{0.5}Ni_{1/3}Co_{1/3}Mn_{1/3}O_2	17	74.85%	201.3	89.8/30 th	2.0-4.6	J. Nanosci.
						Nanotechnol. 16,
						10698–10701,
						2016
P2-Na _{0.85} Li _{0.17} Ni _{0.21} Mn _{0.64} O ₂	15	80%	112	95/50 th	2.0-4.2	Adv. Energy
						Mater. 2011, 1,
						33-336
Zn-doped P2-	12	94%	150	118/30 th	2.0-4.4	J. Power Sources
$Na_{0.66}Ni_{0.26}Zn_{0.07}Mn_{0.67}O_2$						2015, 281, 18-26.
Mg doped P2-	17.3	94.6%	126.8	104.5/50 th	2.5-4.35	Angew. Chem.
$Na_{0.67}Mn_{0.67}Ni_{0.28}Mg_{0.05}O_2$						Int. Ed. 2016, 55,
						1-6
P2-Na _{2/3} (Mn _{1/2} Fe _{1/4} Co _{1/4}) O_2	25.8	89.3%	168	130/30 th	1.5-4.2	Adv. Energy
						Mater. 2015, 5,
						1500944

Table	S1	Summary	on	the	electrochemical	performance	of	layered	NaT _M O ₂
(Tm=ľ	Ni, (Co, Fe, Mn.) c	atho	de materials for	sodium-ion ba	ttei	ries	

P2-Na _{0.67} Mn _{0.65} Co0.2Ni _{0.15} O ₂	20	>100%	N/A	123/50 th	2.0-4.4	J. Mater. Chem.
						A 2013, 1(12):
						3895.
P2-Na _x (Fe _{1/2} Mn _{1/2})O ₂	N/A	>100%	121.3	101.4/80 th	1.5-4.2	Chem. Mater.
						2015, 27,
						3150-3158
P2/O3-Na _{0.8} Li _{0.2} Ni _{0.5} Mn _{0.5} O ₂	15	>100%	130	128/20 th	2.0-4.05	Adv. Energy
						Mater. 2014, 4,
						1400458
P2 Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂	17	>100%	130	40/100 th	2.0-4.5	Electrochim.
						Acta 2013, 113,
						200-204

Williamson-Hall analysis (http://pd.chem.ucl.ac.uk/pdnn/peaks/sizedet.htm)

This method is attributed to G.K.Williamson and his student, W.H.Hall (Acta Metall. 1, 22-31 (1953)). It relies on the principle that the approximate formulae for size broadening, β_L , and strain broadening, β_e , vary quite differently with respect to Bragg angle, θ :

$$\beta_L = K\lambda/(L\cos\theta)$$
 Equation (1)

 $\beta_e = C\varepsilon \tan\theta$ Equation (2)

One contribution varies as $1/\cos\theta$ and the other as $\tan\theta$. If both contributions are present then their combined effect should be determined by convolution. The simplification of Williamson and Hall is to assume the convolution is either a simple sum or sum of squares. Using the former of these then we get:

 $\beta_{tot} = \beta_e + \beta_L = C\varepsilon \tan\theta + \frac{K\lambda}{L\cos\theta}$ Equation (3)

If we multiply Equation (3) by $\cos\theta$ we get:

$$\beta_{tot} \cos\theta = C\varepsilon \sin\theta + K\lambda/L Equation (4)$$

and comparing this to the standard equation for a straight line (m = slope; c = intercept)

$$y = mx + c$$

we see that by plotting $\beta_{tot} \cos\theta$ versus $\sin\theta$ we obtain the strain component from the slope (C ϵ) and the size component from the intercept (K λ/L).

The Williamson-Hall method has many assumptions: its absolute values should not be taken too seriously but it can be a useful method if used in the relative sense; for example a study of many powder patterns of the same chemical compound, but synthesized under different conditions, might reveal trends in the crystallite size/strain which properties in turn can be related to the of the product.

Figure S1 Synchrotron HEXRD patterns of NCM-Q, NCM-WQ and NCM-600.

Figure S2 SEM images of the oxalate precursor (a-c) and the correspondingelementalmapping(d-i).

Figure S3 SEM image (a) and EDX analysis (b) of NCM-Q.

Figure S4 SEM images of NCM-Q and the corresponding elemental mapping.

Figure S5 Fitting on the diffraction peak of NCM-Q (a, b), NCM-WQ (c, d) and NCM-600 (e, f) before and after charged to 4.4 V using CMPR software.

Figure S6 Full (a) and zoomed (b) synchrotron HEXRD patterns of pristine NCM-Qelectrodeandaftercycledat0.5Cfor100cycles.

Figure S7 Cycle performance of NCM-Q electrode at 0.1 C within 2.0-3.8 V.

Figure S8 a) Energy density and b) power density of NCM-Q.

Figure S9 HEXRD patterns of deep-charged NCM-Q, NCM-WQ and NCM-600 (4.4V).

Figure S10 Ex-situXANES and EXAFS spectra of the NCM-WQ electrode atdifferent charge/discharge states: (a, d) Ni K-edge; (b, e) Co K-edge and (c, f) Mn K-edge.CforchargeandDfordischarge.

Figure S11 Ex-situXANES and EXAFS spectra of the NCM-600 electrode atdifferent charge/discharge states: (a, d) Ni K-edge; (b, e) Co K-edge and (c, f) Mn K-edge.CforchargeandDfordischarge.

Figure S12 *Ex-situ* Ni K-edge XANES and EXAFS for NCM-Q (a, b), NCM-WQ (c, d) and NCM-600 (e, f) at different charge/discharge states. C for charge and D for discharge.

Figure S13 a) Rietveld refinement of HEXRD pattern and b) charge/discharge curves of LiNCM-333, c) *in-situ* HEXRD pattern of de-lithiated LiNCM-333 with the presence of 2 μ L electrolytes (1M LiPF₆/EC+DMC).