Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

MnO_x-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors

Sinem Ortaboy^{*a,b,c}, John P. Alper^d, Francesca Rossi^e, Giovanni Bertoni^e, Giancarlo Salviati^e, Carlo Carraro^{a,b}, Roya Maboudian^{*a,b}

Figure S1. EDX elemental mapping of a single C/PSiNW obtained by energy-filtered TEM imaging showing a) C map, b) Si map, c) C and Si superimposed map; d) Raman spectrum of the C/PSiNWs electrode.

Figure S1d shows the Raman spectrum of the C/PSiNWs electrode. The Raman measurement is conducted at room temperature using a HoribaJY LabRAM confocal Raman spectrometer with an excitation laser line of 632.8 nm. The band observed at 501.2 cm⁻¹ corresponds to the Si nanowire arrays while the peaks located at nearly 1316 and 1590 cm⁻¹ attributed to the characteristic D and G bands of carbon materials, respectively. The D (defect) peak is linked to the breathing mode of A₁g symmetry at the edges of graphite plains in carbon materials and it becomes active when the structure has various defects. The G (graphitic) peak is assigned to the stretching mode of E₂g symmetry in sp² carbon atoms showing characteristics of ideal graphite.¹ The intensity ratio of D and G bands (I_D/I_G) gives direct information about defective nature of carbon matrix. From the figure, the I_D/I_G ratio calculated as 1.7 indicating structural disorder in the carbon layer. This result is in good agreement with the TEM and XPS studies.

Figure S2. X-ray photoelectron spectra of $MnO_x/C/PSiNW$ electrode: a) Si 2p, b) C 1s, c) O 1s regions. XPS spectra of C/PSiNW electrode: d) Si 2p, e) C 1s, and f) O 1s regions of C/PSiNWs.

Figure S2a shows the close-up Si 2p region of the spectrum obtained on $MnO_x/C/PSiNW$ sample. Two peaks at 103.6 and 100.1 eV are attributed to Si-O (SiO₂) and Si-C bands, respectively.²⁻⁴ Most likely, HNO₃ step and atmospheric oxygen and water contribute to the formation of SiO₂. This SiO₂ layer is also confirmed by STEM-HAADF analysis which provides detailed information about the structure of nanowire arrays (Figure 1f). The high-

resolution XPS spectrum for the C 1s region of MnO_x/C/PSiNWs sample is shown in Figure S2b. The asymmetric C 1s peak is deconvoluted into two peaks. The peak positioned at 284.8 eV corresponds to graphitic carbon (sp² bonding), while the peak located at 286.5 eV arises from the oxygenated carbon species such as -C-O,-C=O and -O-C=O.⁵ From Figure S2c, it is revealed that the O 1s signal arises from three environments, namely SiO_xC_y, SiO₂ and Mn-O located at 534.7, 532.8 and 530.1 eV, respectively.⁶⁻⁷ Figures S2 (d-f) show Si 2p, C 1s and O 1s regions of C/PSiNW electrode, respectively. In comparison, the C/PSiNW sample without MnO_x deposition only exhibits O 1s signal from two environments, namely SiO_xC_y, and Si-O (Figures S2c and S2f).

Table S1. XPS fitting parameters for deconvolution of Si 2p, O 1s, Mn 2p and C 1s regions of C/PSiNWs and $MnO_x/C/PSiNWs$ electrodes.

		Ν	/InO _x /C/P	SiNWs	C/PSiNWs			
Core level	Bonding	Binding	FWHM	Area	Binding	FWHM	Area	
	structure	Energy	(eV)	(keV.counts)	Energy	(eV)	(keV.counts)	
		(eV)			(eV)			
Si 2p	Si ⁴⁺ -O	103.6	2.4	12.8	103.6	2.3	17.1	
	Si-C	100.2	2.6	2.6	99.8	1.9	3.9	
O 1s	Mn-O	530.1	1.9	8.6	-	-		
	O-Si ⁴⁺	532.8	2.6	29.8	532.9	2.3	22.2	
	SiO _x C _y	534.7	3.6	3.8	534.9	3.3	4.2	
Mn 2p _{3/2}	Mn ²⁺	642.1	2.9	3.5	-	-	-	
	Mn ³⁺	643.6	4.7	1.9	-	-	-	
Mn 2p _{1/2}	Mn ²⁺	653.7	3.5	1.6	-	-	-	
	Mn ³⁺	654.8	3.0	0.9	-	-	-	
C 1s	C-C	284.8	1.6	11.6	284.8	1.6	53.8	
	C-O, C=O	286.0	2.9	21.8	286.0	3.0	71.7	

Figure S3. Effect of a) KMnO₄ concentrations (15 min deposition time, 20 μ m nanowire length) and b) deposition time (20 mM KMnO₄ concentration, 40 μ m nanowire length) on areal capacitances of the MnO_x/C/PSiNWs electrode.

Samples	Electrolyte	Nanowire length (μm)	Capacitance	Potential window (V)	Cycle life	Capacitance Retention (%)	Ref.
C@SiNWs	1 M Na ₂ SO ₄	19	25.64 mFcm ⁻² (0.1 mAcm ⁻²)	0.7	25000 (0.025 Vs ⁻¹)	75	8
C/PSiNWs	EMIM-TFSI	75	~190 mFcm ⁻² (1 mAcm ⁻²)	0.8	5000 (3mAcm ⁻²)	83	9
MnO ₂ @SiNWs (3D hierarchical)	Li-doped PMPyrrBTA	50	13.38 mFcm ⁻² (10 mVs ⁻¹)	2.2	5000	90.9	10
HNO ₃ -oxidized n-type SiNWAs	[Bmim][NTf ₂]	15	216 µFcm ⁻²	1.7	-	-	11
HNO ₃ -oxidized p-type SiNWAs	[Bmim][NTf ₂]	15	404 µFcm ⁻²	1.5	-	-	11
rGO-SiNWs	1-ethyl-3- methyl imidazoliumbi s imide	5-6	240 μFcm ⁻² (0.01 mAcm ⁻²)	1.3	1000	~98	12
MnO _x /C/PSiNW s	EMIM-TFSI	75	381 mFcm ⁻² (12.5mAcm ⁻²)	2.95	10000 (0.5Vs ⁻¹)	82	This work

 Table S2. Electrochemical performances of silicon based electrodes for supercapacitor applications.

SiNWs: Silicon nanowires, EMIM-TFSI: 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide, PMPyrrBTA: 1-Methyl-1-propylpyrrolidinium bis(trifluromethylsulfonyl)imide, SiNWAs: Silicon nanowire arrays, [Bmim][NTf₂]:1-Butyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide, rGO: reduced graphene oxide.

Figure S4. a) EIS spectrum of AHS recorded at open circuit potential (OCP) (inset: enlarged view in the range of 0- 140 Ω), b) Galvanostatic charge-discharge curves of AHS device for different current densities (0.2 mAcm⁻² – 2.0 mAcm⁻²), c) cyclic voltammetry curves of AHS device as a function of scan rate, d) GCD cycling performance of the AHS device at the current density of 4.0 mAcm⁻² in the voltage range of -1.6 – 2.0 V.

Notes and references

- 1. M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy & Environmental Science 2013, 6, 1249.
- 2. S. Basu, Ed. Study of SiO₂/Si Interface by Surface techniques, InTech, 2011.
- 3. A. Vitale, A. Pollicino, E. Bernardi, R. Bongiovanni, Progress in Organic Coatings 2015, 78, 480.

- 4. A. Nakao, M. Iwaki, H. Sakairi, K. Terasima, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1992, 65, 352.
- 5. A. Avila, I. Montero, L. Galán, J. M. Ripalda, R. Levy, Journal of Applied Physics 2001, 89, 212.
- 6. R. E. John, A. Chandran, M. Thomas, J. Jose, K. C. George, Applied Surface Science 2016, 367, 43.
- 7. L. Yao, K. Kan, Y. Lin, J. Song, J. Wang, J. Gao, P. Shen, L. Li, K. Shi, RSC Advances 2015, 5, 15515.
- 8. R. R. Devarapalli, S. Szunerits, Y. Coffinier, M. V. Shelke and R. Boukherroub, ACS Applied Materials & Interfaces, 2016, 8, 4298-4302.
- 9. J. P. Alper, S. Wang, F. Rossi, G. Salviati, N. Yiu, C. Carraro and R. Maboudian, Nano Lett, 2014, 14, 1843-1847.
- 10. D. P. Dubal, D. Aradilla, G. Bidan, P. Gentile, T. J. Schubert, J. Wimberg, S. Sadki and P. Gomez-Romero, Sci Rep, 2015, 5, 9771.
- 11. L. Qiao, A. Shougee, T. Albrecht and K. Fobelets, Electrochimica Acta, 2016, 210, 32-37.
- 12. A. Soam, P. Kavle, A. Kumbhar and R. O. Dusane, Current Applied Physics, 2017, 17, 314-320.