Supporting Information

Electrocatalysis of Polysulfide Conversion by Sulfur-deficient MoS₂ Nanoflakes for Lithium-sulfur Batteries

Haibin Lin¹, Liuqing Yang¹, Xi Jiang¹, Guochun Li¹, Tianran Zhang¹, Qiaofeng Yao¹, Guangyuan Wesley Zheng^{1,2*} and Jim Yang Lee^{1*}

¹Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore. ²Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.

Corresponding addresses: cheleejy@nus.edu.sg; wesley-zheng@imre.a-star.edu.sg

Fig. S1 (A and B) FESEM images of commercial MoS_2 particles.

Fig. S2 TEM images of as-synthesized MoS_2 nanoflakes.

	As-synthesized	600 °C for 3 h	600 °C for 6 h	700 °C for 3 h
Mo (%)	33.2	35.1	37.7	47.9
S (%)	65.4	60.5	56.1	20.5
O (%)	1.4	4.4	6.2	31.6

Table S1 Elemental compositions of MoS_2/GO treated at different temperature and reaction time.

Fig. S3 TEM images of MoS_2/GO composite after heating at 700 °C for 3 hours.

Fig. S4 (A) FESEM image and (B and C) TEM images of rGO synthesized from GO at 600 °C for 6 hours.

Fig. S5 TGA profiles of MoS_2/rGO and MoS_{2-x}/rGO in air (the final product was MoO_3).

Peak a

Reaction on working electrode: $S_6^{2-} + 10e^- + 12Li^+ \rightarrow 6Li_2S$ Reaction on counter electrode: $4S_6^{2-} - 8e^- \rightarrow 3S_8$

Peak b

Reaction on working electrode: $6\text{Li}_2\text{S} - 10\text{e}^- \rightarrow \text{S}_6^{2-} + 12\text{Li}^+$ Reaction on counter electrode: $3\text{S}_8 + 8\text{e}^- \rightarrow 4\text{S}_6^{2-}$

Peak c

Reaction on working electrode: $4S_6^{2-} - 8e^- \rightarrow 3S_8$ Reaction on counter electrode: $S_6^{2-} + 10e^- + 12Li^+ \rightarrow 6Li_2S$

Peak d

Reaction on working electrode: $3S_8 + 8e^- \rightarrow 4S_6^{2^-}$ Reaction on counter electrode: $6Li_2S - 10e^- \rightarrow S_6^{2^-} + 12Li^+$

Fig. S6 Illustration of the electrode reactions for the redox peaks.

Fig. S7 Multi-cycle voltammograms of $MoS_{2-x}/rGO-2$ at 3 mV s⁻¹. (The $MoS_{2-x}/rGO-2$ composite was prepared as follows: MoS_2 nanoflakes were separated from the preparation solution by vacuum filtration, and heated at 600 °C in H₂ atmosphere for 6 hours. 0.04 g of the MoS_{2-x} formed as such was dispersed in 50 mL water, and mixed with 0.16 g rGO. The MoS_2 $_x/rGO-2$ composite was then recovered by vacuum filtration.)

Fig. S8 Adsorption of Li_2S_6 solution (3 mmol L⁻¹ in 1:1 (v/v) DME/DOL) on the same amount of rGO, MoS_2/rGO and MoS_{2-x}/rGO .

Fig. S9 TGA of rGO/S and $MoS_{2-x}/rGO/S$ composites in N_2 (the final products were rGO for the rGO/S composite and MoS_{2-x}/rGO for the $MoS_{2-x}/rGO/S$ composite).

Fig. S10 (A) XPS survey scan, (B) Mo 3d, (C) S 2p, (D) C 1s and (E) O 1s X-ray diffraction patterns of MoS_{2-x}/rGO synthesized from MoS_2/GO at 600 °C for 6 hours.

Fig. S11 Multi-cycle voltammograms of (A) rGO and (B) MoS_2/rGO at 3 mV s⁻¹.

Fig. S12 Multi-cycle voltammograms of MoO₃/rGO at 3 mV s⁻¹. (The large polarization suggests that MoO₃ would have little effect on the measured electrochemical performance.)

Fig. S13 (A) Comparison of rate performance at different C-rates, (B) galvanostatic dischargecharge curves and (C) cycle stability of Super P/S and $MoS_{2-x}/rGO/S$ cells in the 1.8-2.6 V voltage range at 0.5 C. (The Super P/S composite was prepared by mixing sulfur power and Super P carbon in a 75:25 mass ratio and then sealed in a vial with Ar. The mixture was then heated at 155 °C for 5 hours. The Super P/S electrode was prepared by casting the NMP slurry containing Super P/S, PVDF and Super P in the weight ratio of 80:10:10 onto an Al foil.)

Catalyst	Rate performance	Initial capacity	Cycling performance	Coulombic efficiency	Reference
Cobalt metal in the N-doped graphitic carbon	565 mAh g ⁻¹ (5 C)	1440 mAh g ⁻¹ (0.2 C)	850 mAh g ⁻¹ after 200 cycles	close to 100%	1
Platinum on graphene	1100 mAh g ⁻¹ (0.2 C)	1100 mAh g ⁻¹ (0.2 C)	789 mAh g ⁻¹ after 100 cycles	99.3%	2
TiN/C	411 mAh g ⁻¹ (5 C)	1069 mAh g ⁻¹ (0.2 C)	748 mAh g ⁻¹ after 50 cycles	N.A.	3
WS ₂	380 mAh g ⁻¹ (1 C)	596 mAh g ⁻¹ (0.5 C)	542 mAh g ⁻¹ after 360 cycles	99%	4
RuO ₂	912 mAh g ⁻¹ (0.5C)	912 mAh g ⁻¹ (0.5C)	513.3 mAh g ⁻¹ after 400 cycles	92.5%	5
MoS _{2-x} /rGO	826.5 mAh g ⁻¹ (8 C)	1159.9 mAh g ⁻¹ (0.5 C)	628.2 mAh g ⁻¹ after 500 cycles	99.6%	this work

 Table S2 Comparison of catalysts reported to date for lithium-sulfur batteries (All capacities are based on the mass of sulfur only).

Cathode	Rate performance	Initial capacity	Cycling performance	Reference
NG/S-20 TiO ₂	833 mAh g ⁻¹ (4 C)	1102 mAh g ⁻¹ (1 C)	918.3 mAh g ⁻¹ after 500 cycles	6
MCM/Nb ₂ O ₅ /S	887 mAh g ⁻¹ (5 C)	1289 mAh g ⁻¹ (0.5 C)	913 mAh g ⁻¹ after 200 cycles	7
N-ACNT/G	770 mAh g ⁻¹ (5 C)	1152 mAh g ⁻¹ (1 C)	880 mAh g ⁻¹ after 80 cycles	8
S/(G-GCNs)	765 mAh g ⁻¹ (5 C)	1375 mAh g ⁻¹ (0.1 C)	943 mAh g ⁻¹ after 200 cycles	9
CNR-S	663 mAh g ⁻¹ (10 C)	1255 mAh g ⁻¹ (0.5 C)	1147 mAh g ⁻¹ after 500 cycles	10
S-HMT@CNT	888 mAh g ⁻¹ (7 C)	1113 mAh g ⁻¹ (1 C)	1040 mAh g ⁻¹ after 100 cycles	11
HPCR-805	646 mAh g ⁻¹ (5 C)	970 mAh g ⁻¹ (1 C)	700 mAh g ⁻¹ after 300 cycles	12
Sulfur nanodots on Ni foam	521 mAh g ⁻¹ (10 C)	1135 mAh g ⁻¹ (0.5 C)	895 mAh g ⁻¹ after 300 cycles	13
Vertically aligned S-G nanowalls	410 mAh g ⁻¹ (8 C)	~1000 mAh g ⁻¹ (0.15 C)	1220 mAh g ⁻¹ after 120 cycles	14
MoS _{2-x} /rGO/S	826.5 mAh g ⁻¹ (8 C)	1159.9 mAh g ⁻¹ (0.5 C)	628.2 mAh g ⁻¹ after 500 cycles	this work

Table S3 Comparison of $MoS_{2-x}/rGO/S$ cathode to other cathodes of lithium-sulfur batteriesreported to date.

References

- 1. Y.-J. Li, J.-M. Fan, M.-S. Zheng and Q.-F. Dong, *Energy Environ. Sci.*, 2016, **9**, 1998-2004.
- 2. H. Al Salem, G. Babu, C. V. Rao and L. M. Arava, J. Am. Chem. Soc., 2015, 137, 11542-11545.
- 3. T.-G. Jeong, D. S. Choi, H. Song, J. Choi, S.-A. Park, S. H. Oh, H. Kim, Y. Jung and Y.-T. Kim, *ACS Energy Lett.*, 2017, **2**, 327-333.
- 4. G. Babu, N. Masurkar, H. Al Salem and L. M. Arava, *J. Am. Chem. Soc.*, 2017, **139**, 171-178.
- 5. N. Ding, L. Zhou, C. Zhou, D. Geng, J. Yang, S. W. Chien, Z. Liu, M. F. Ng, A. Yu, T. S. Hor, M. B. Sullivan and Y. Zong, *Sci. Rep.*, 2016, **6**, 33154.
- 6. M. Yu, J. Ma, H. Song, A. Wang, F. Tian, Y. Wang, H. Qiu and R. Wang, *Energy Environ. Sci.*, 2016, **9**, 1495-1503.
- 7. Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling and D. Long, *Energy Environ. Sci.*, 2016, **9**, 3230-3239.
- 8. C. Tang, Q. Zhang, M. Q. Zhao, J. Q. Huang, X. B. Cheng, G. L. Tian, H. J. Peng and F. Wei, *Adv. Mater.*, 2014, **26**, 6100-6105.
- 9. J. Zhang, C. P. Yang, Y. X. Yin, L. J. Wan and Y. G. Guo, *Adv. Mater.*, 2016, **28**, 9539-9544.
- 10. S. Chen, X. Huang, H. Liu, B. Sun, W. Yeoh, K. Li, J. Zhang and G. Wang, *Adv. Energy Mater.*, 2014, **4**, 1301761.
- 11. J.-Y. Hwang, H. M. Kim, S.-K. Lee, J.-H. Lee, A. Abouimrane, M. A. Khaleel, I. Belharouak, A. Manthiram and Y.-K. Sun, *Adv. Energy Mater.*, 2016, **6**, 1501480.
- 12. Z. Zheng, H. Guo, F. Pei, X. Zhang, X. Chen, X. Fang, T. Wang and N. Zheng, *Adv. Funct. Mater.*, 2016, **26**, 8952-8959.
- 13. Q. Zhao, X. Hu, K. Zhang, N. Zhang, Y. Hu and J. Chen, *Nano Lett.*, 2015, 15, 721-726.
- 14. B. Li, S. Li, J. Liu, B. Wang and S. Yang, *Nano Lett.*, 2015, **15**, 3073-3079.