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Synthesis and Processing
La0.5Na0.5Ti1–xNbxO3: Pre-dried reagents of La2O3 (Sigma Aldrich, 99.99%), Na2CO3 (Alfa 
Aesar, 99.997%), TiO2 (Sigma Aldrich, 99.99%) and Nb2O5 (Alfa Aesar, 99.9985%) were 
weighed to give solid solutions of desired composition. All reagents were dried overnight at 
473 K, except for La2O3, which was annealed at 1223 K. These mixtures were ground in 
acetone for 10 min, before being fired as a powder in an alumina crucible under air at 1273 K 
for 4 h using a 1 K min–1 heating rate and 5 K min–1 cooling rate. The obtained powders were 
ground for 10 min using a pestle and mortar, before a portion was uniaxially pressed into a 13 
mm disc-shaped pellet (1 tonne, 60 s) approximately one gram in mass. The pellet was placed 
in an alumina boat, and buried in the remainder of the mixture which was used as sacrificial 
powder in order to minimise the loss of sodium during firing. This was then fired to 1573 K 
for 8 h under a 50 mL min–1 flow of H2/N2 (5/95%) using heating and cooling rates of 1 K 
min–1 and 5 K min–1, respectively. The p(O2) was monitored during each firing under H2/N2 
(5/95%) using a Cambridge Sensotec Rapidox 2100 Oxygen Analyser. The typical p(O2) 
under this atmosphere was measured to be 10–19 ppm (or 10–22 mbar). After cooling to room 
temperature, the pellet was separated from the sacrificial powder and then ground for 
characterisation.
Dense pellets were processed for property measurement by uniaxially pressing approximately 
one gram of the powders obtained from the first firing as described above into 13 mm disc-
shaped pellets (1 tonne, 60 s) with the remaining mixture set aside to be used as sacrificial 
powder. The pellets were then further pressed at ambient temperature under an isostatic 
pressure of 200 MPa using an Autoclave Engineers Cold Isostatic Press. The pellets were 
placed in an alumina boat and buried in the sacrificial powder before being sintered at 1623 K 
for 8 h under a 50 mL min–1 flow of H2/N2 (5/95%) using heating and cooling rates of 1 K 
min–1 and 3 K min–1, respectively. Pairs of pellets of each composition were processed 
through this method (i.e. in the same reaction); one for the measurement of electronic 
properties and the other for measurement of thermal conductivity. Densities of the sintered 
pellets were calculated using the Archimedes method.
The undoped La0.5Na0.5TiO3 was synthesised using a procedure similar for the doped 
La0.5Na0.5Ti1–xNbxO3 series described above. The second firing, performed at 1573 K for 8 h 
with the pellet buried under sacrificial powder, was performed under air instead of a flow of 
H2/N2. Pairs of dense pellets for measurement were processed following the procedure 
described above, with the sintering step again being performed under air instead of H2/N2.

Sr0.9Dy0.1TiO3–δ: Pre-dried reagents of SrCO3 (Alfa Aesar, 99.99%), TiO2 (Sigma Aldrich, 
99.99%) and Dy2O3 (Alfa Aesar, 99.99%) were weighed to give a composition of 
Sr0.9Dy0.1TiO3. All reagents were dried overnight prior to weighing; SrCO3 and TiO2 at 473 
K, and Dy2O3 at 1223 K. These mixtures were ground in acetone for 10 min, before being 
pressed into a 13 mm pellet (1 tonne, 60 s) and placed inside an alumina crucible before 
being fired at 1300 °C for 6 h in air using heating and cooling rates of 3 K min–1. The pellet 
was then broken up and ground for 10 minutes before being uniaxially pressed into a 13 mm 
pellet (1 tonne, 60 s), approximately one gram in mass. The pellet was then subjected to 
isostatic pressing at 200 MPa using an Autoclave Engineers Cold Isostatic Press before being 
placed in an alumina boat on a small layer of powder of the same composition and sintered at 
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1773 K for 6 h under a 50 mL min–1 flow of H2/N2 (5/95%) using heating and cooling rates of 
3 K min–1 and 3 K min–1, respectively. Rietveld analysis of synchrotron X-ray diffraction 
(SXRD) data from Sr0.9Dy0.1TiO3–δ showed the material to be phase pure and agree well with 
the structure reported previously (Fig. S13, Table S12).1, 2

SrTiO3: Pellets of un-doped SrTiO3 were prepared following a similar procedure for the 
doped Sr0.9Dy0.1TiO3–δ described above. However, the isostatically pressed pellets, formed 
from powder following the first firing at 1573 K, were sintered under air at 1773 K instead of 
H2/N2. Rietveld analysis of SXRD data from SrTiO3 showed the material to be phase pure 
and agree well with the structure reported previously (Fig. S13, Table S13).3

Characterisation
Structural analyses were performed by Rietveld refinement of synchrotron powder X-ray 
diffraction (SXRD), recorded at beamline I11 (λ = 0.826119 Å) at Diamond Light Source, 
U.K., and powder neutron diffraction (PND) data collected on HRPD at ISIS, the U.K. time-
of-flight spallation neutron source. Powders were contained within borosilicate capillaries for 
measurement of synchrotron X-ray diffraction data. For powder neutron diffraction (PND), 
powders were loaded into thin-walled vanadium cylindrical cans of 8 mm diameter, and data 
were measured at room temperature on three detector banks (2θ = 168°, 90° and 30°). Data 
were corrected for absorption effects before analysis. Rietveld refinements were carried out 
using Topas Academic.4 Further details of the crystal structure investigations may be 
obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen 
(Germany), on quoting the depository numbers CSD-433009, CSD-433010, CSD-433011, 
CSD-433012. SEM images were collected using a Hitachi S-4800, cold cathode, field-
emission scanning electron microscope (SEM). Samples were deposited on a carbon tape 
attached to an aluminium stub. Thermogravimetric analysis (TGA) was carried out using a 
TA Instruments Q-600. Data were measured under a 50 mL min–1 flow of air up to 1000 °C 
using a heating rate of 5 °C min–1 and cooling rate of 10 °C min–1.
To measure the diffuse reflectance, UV-visible spectra were recorded from powders on an 
Agilent Cary 5000 UV-vis-NIR spectrophotometer in the wavelength range 200 -1500 nm. 
The Kubelka-Munk function F(R) was obtained for each sample using the reflectance R in the 
equation F(R) = (1-R)2/2R. The Tauc method was then used to determine the direct band gaps 
of SrTiO3, Sr0.9Dy0.1TiO3 and La0.5Na0.5Ti1-xNbxO3 (where x = 0, 0.05, 0.1 and 0.2) by 
plotting (hνF(R))2 against energy (Fig. S8, Table S9).

Chemical Analysis
Analysis of sample compositions was undertaken using Inductively Coupled Plasma Optical 
Emission Spectrometry (ICP-OES). Solutions of La0.5Na0.5Ti1–xNbxO3 (x = 0, 0.05, 0.1 and 
0.2) were prepared by acid digestion. Approximately 10 mg of each composition were 
dissolved in 7 mL of concentrated HCl inside sealed Teflon-lined stainless steel autoclaves 
which were heated to 503 K for 3 h. These solutions were made up to 100 mL with ultra-pure 
water (Fisher Analytical Reagent Grade, Na < 0.05 ppm) and stored in plastic containers. 
Data were collected on an Agilent 5110 SVDV ICP-OES instrument.
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Thermal Properties
High temperature thermal diffusivity (α) data were recorded through laser flash analysis 
performed on a Netzsch LFA 457. The sintered pellets (approximately 10 mm in diameter) 
were coated in graphitic carbon and data were collected in 50 K steps in the temperature 
range 295 to 943 K, with 5 min equilibration at each temperature under a 100 mL min–1 flow 
of He. The diffusivity was measured three times at each temperature and averaged; the 
standard deviation of these points was typically below 0.5%. Thermal expansion profiles 
were measured on bars approximately 4 mm in length performed on a Netzsch DIL 402C 
push-rod dilatometer under dynamic vacuum. Data were recorded from 298 K up to 973 K 
with a heating rate of 3 K min–1. Heat flux profiles were measured on small pieces (30-50 
mg) of sintered pellets using a Netzsch DSC 404 F1 under a 50 mL min–1 flow of He. Data 
were recorded from 323 to 973 K at a heating rate of 10 K min–1. Data were measured under 
identical conditions from a sapphire standard of similar mass which was used to determine 
the heat capacities (Cp) of each sample. The thermal conductivity (κ) was calculated through 
combination of the diffusivity, dilatometry and heat capacity data by κ(T) = α(T)·Cp(T)·ρ(T), 
where ρ is the pellet density. The total thermal conductivity (κtotal) is equal to the sum of the 
lattice (κlatt) and electronic (κelec) contributions, κtotal = κlatt + κelec, with the electronic 
contribution to the thermal conductivity being estimated through the Wiedemann-Franz law,5 
κelec = LTσ, where L is the Sommerfield value for the Lorenz number (2.45 × 10–8 W Ω K–2), 
T the temperature, and σ the electrical conductivity.
Low temperature thermal conductivities of Sr0.9Dy0.1TiO3 and SrTiO3 were measured on a 
Quantum Design Physical Property Measurement System (PPMS) on cooling and heating 
using the Thermal Transport Option provided by Quantum Design using bars with typical 
dimensions of 2 × 2 × 8 mm. Measurements from the La0.5Na0.5Ti1–xNbxO3 series (x = 0, 0.05, 
0.1 and 0.2) with low κ were made in the 2-point geometry on dense pellets approximately 10 
mm in diameter and 2 mm thick. This measurement option was chosen so as to make the 
thermal conductance of the sample much higher than the errors associated with the radiative 
heat loss. 
Low temperature specific heat capacities of Sr0.9Dy0.1TiO3–δ and La0.5Na0.5Ti0.8Nb0.2O3 were 
measured on the PPMS using the Heat Capacity Option. Prior to taking measurements on 
samples, addenda tables were created. A small amount of Apiezon N Grease was placed on 
the sample platform and the heat capacity of the grease and the platform was measured. 
Afterwards, a ceramic sample was mounted on the platform by pressing it on the grease that 
had already been applied in order to run the addenda measurements. Typical sample mass and 
dimensions were 30 mg and 1.7 × 1.7 × 2.5 mm, respectively. The bars were cut on a low-
speed diamond saw in a similar fashion as for the electrical property measurements outlined 
above and subsequently polished to improve thermal contact with the calorimeter. The 
sample heat capacity was obtained by subtracting the addenda table from the dataset 
including both the sample and the addenda.

Conductivity and thermopower measurement
High temperature electrical conductivities (σ) and Seebeck coefficients (S) were measured 
using rectangular bars on a ZEM-3 commercial apparatus (ULVAC-Riko). Bars with typical 
dimensions of 2 × 2 × 8 mm were cut using a low-speed diamond saw from sintered pellets. 
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The bars were mounted on a sample holder in off-axis 4-point geometry, where the inner 
thermocouples/voltage probes and outer current electrodes were pressed against the longer 
dimension or end sides of a bar respectively. The IR vacuum sample furnace was flushed 
with He and evacuated three times before measurement, and the residual partial pressure of 
He in the furnace was set to 0.01 MPa. Data were recorded both on heating and cooling using 
the slope method and applying temperature gradients of 10 K, 20 K and 30 K at each 
temperature. Consistent readings were obtained during heating and cooling cycles of the 
measurement, which ensured no sample degradation took place.
Low temperature electrical resistivity and Seebeck coefficients of La0.5Na0.5Ti1–xNbxO3 (x = 
0.05, 0.1 and 0.2) and Sr0.9Dy0.1TiO3 were measured from dense bars with typical dimensions 
of 2 × 2 × 8 mm cut from the same pellet as the bars for high temperature measurement 
described above. A silver-filled epoxy was used to affix gold-coated copper electrodes to the 
bars in the 4 terminal geometry. Data were recorded in continuous mode on a Quantum 
Design Physical Property Measurement System on cooling and heating using the Thermal 
Transport Option provided by Quantum Design.

Estimation of uncertainties
The standard deviations of the low temperature thermoelectric properties (, , S, Cp) were 
reported by the data aquisition software (DynaCool MultiVu) after estimating the goodness of 
of the model fits to the experimental data. The errors in the individual quantities unrelated to 
the transient sample response to the thermal excitation, such as heater current, sample 
radiation loss, thermal conductance leak, etc. were propagated using the usual quadrature 
formula to obtain the net standard deviation.
For the high temperature properties, the relative errors in , S, Cp were assumed to be about 
5% as suggested by the manufacturer. This resulted in overall relative uncertainties in , 
power factors and figure of merit to be 5%, 11% and 13% respectively.

Modelling Thermal Conductivity
Modified Callaway Model for Crystalline Solids: The measured thermal conductivities of 
STO and SDTO were modelled using the phenomenological approach reported by Callaway.6 
Assuming the Debye approximation of constant acoustic group velocity independent of 
polarization is valid, the final expression for the lattice thermal conductivity is given by:
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where kTx /h  is the variable of integration, 1
ph  stands for the phonon relaxation rate,  

is the phonon frequency, and vs, ħ, kB, and D are the mean velocity of sound, reduced Planck 
constant, Boltzmann constant, and Debye temperature, respectively. The mean sound 
velocities were calculated for STO and SDTO from the Debye temperatures given in Table 
S1 using the expression:
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where N  is the number of atom per unit volume. The total phonon scattering rate 1
ph  was 

calculated via Matthiessen’s rule as a sum of inverse relaxation times each representing 
contribution of a particular scattering mechanism to the total thermal resistance:

(S3)111111   resLIUpdBph 

where 
1

B , 1
pd , 1

U , , 1
res  correspond to boundary, point-defect, Umklapp, lattice 1

LI
imperfection, and resonance scattering, respectively. The boundary scattering relaxation rate 
is given by:
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B 1 (S4)

where L is the average grain size of a polycrystalline sample, is set by the microstructure of a 
material and contains no adjustable parameters. The average grain size of the ceramics 

modelled (≈10 μm) was estimated from SEM (Fig. S12) and the value of 
1

B  was kept fixed 
during the course of the modelling.

The point-defect relaxation rate 1
pd  accounts for the mass contrast between foreign atoms 

and regular lattice sites and the strain field created by such defects. Its frequency dependence 
was approximated by the equation:7

4
3

422

3

4
1

4
11

4






 
















 






   A

v
V

r
r

f
m
m

f
v

V

si

i
i

i

i
i

s
pd (S5)

where V is the volume per atom, ω is the phonon frequency, fi is the fraction of atoms with 
mass mi and radius ri on a crystallographic site with average mass  and radius .  is the 𝑚̅ 𝑟̅

disorder scattering parameter which equates to  = MF+SF where the mass fluctuation term 

is MF =  and the strain field term is SF = .
∑

𝑖

𝑓𝑖(1 ‒ 𝑚𝑖 𝑚̅)2 ∑
𝑖

𝑓𝑖(1 ‒ 𝑟𝑖 𝑟̅)2

The value of the point-defect scattering pre-factor A given in Table S1 for SDTO was 
evaluated via Equation S5. The value of A estimated by Steigmeier was used to model the 

frequency dependence of 1
pd  for STO.8 Just as with the boundary term, the point defect 

scattering pre-factors were treated as constants set by the composition of each material and 
were fixed to the values given in Table S1.
The contribution of the Umklapp phonon-phonon scattering to the total thermal resistance 
was accounted for via the empirical formula proposed by Slack:9
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where B is the constant of proportionality, which depends on D and the anharmonicity of the 
lattice. Umklapp processes are usually dominant only at high temperatures so the value of B 
was adjusted to best fit latt above 300K. 
While modelling the temperature dependence of latt for STO and SDTO it was found that the 
experimental data could be described more accurately if two additional terms, lattice 
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imperfection  and resonant scattering 1
res  terms were included in the final expression for1

LI
1

ph . The former term was shown to vary as

(S7)21   CLI

and might arise either from from scattering by planar defects or defect aggregates,10 such as 
stacking faults,11 or dislocations at grain boundaries12 or electrons-phonon scattering.13,14 It 
must be noted that both electron-phonon and lattice imperfection scattering would result in 
identical frequency dependence of the relaxation time (Equation S7), which makes it 
impossible to establish the scattering mechanism underlying the 2 power law dependence 
unambiguously. However, given the fact that electrical conductivity of SDTO and doped 
LNTO was found to be strongly effected by resistive grain boundaries below 500K (Fig. S9) 
the above power law frequency dependence was ascribed to the lattice imperfections. It is 
interesting to note that the presence of terraces of growth on the surface of individual grains 
could be inferred from SEM images for the titanate ceramics prepared in this work (Fig. 
S12). Such peculiar surface structure is often due to inhomogeneous defect/impurity 
distribution during the sample preparation and processing.15 It is also worth recalling that 
extended planar rock-salt SrO layers as in Ruddlesden-Popper phases are deemed to be a 
major source of phonon scattering in titanate thermoelectrics.1 These extended defects would 
also result in the frequency dependence of phonon relaxation rate given by Equation S7.
Inclusion of the resonant scattering term substantially improved the description of the thermal 
conductivity – below 70K. This was modelled by an additional relaxation time given by
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where D is the prefactor proportional to the concentration of oscillators, which has been 
shown to be directly related to the amount of resonant species in a crystal, o is the resonance 
frequency and  is the damping factor.16 Interestingly, the thermal conductivity of STO drops 
below that of SDTO on cooling, which suggests that the effective concentration of oscillators 
is actually higher in STO than SDTO. The same conclusion follows from the modelling as a 
higher value of parameter D was obtained for STO. Resonant behaviour is typically expected 
to scale with the amount of dopant however, Ahrens et al. showed that the low temperature 
specific heat of STO had a significant Einstein contribution on top of the Debye T3 
background, which presumably resulted from low-lying optical modes in the phonon 
spectrum.17 The concentration of oscillators was estimated to be 0.75 atoms per formula 
unit, which is considerably larger than in other perovkites. While modelling latt for STO and 
SDTO, the resonance frequency was set to the same value as the one obtained previously.18 
 
Cahill Model for Solids with Vibrational Disorder: The lower limit of thermal conductivity 
for STO was estimated via the model of Cahill.18 This model describes a solid as a set of 
localized oscillating entities with random phases. The minimum thermal conductivity, κmin, is 
achieved when all vibrational modes disperse at a length scale comparable to half the phonon 
wavelength:
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where N is the number density of atoms which is known from structural refinement, vi is the 
sound velocity and i is the cut-off frequency (in units of K) for polarization mode i. The 
latter have been estimated through Equation S2 using the values of longitudinal and 
transverse velocities of sound reported in literature.19 

Dominant Phonon Scattering Mechanism in SDTO and LNTO
In order to estimate the effect of different scattering mechanisms in SDTO and LNTO on the 
lattice phonons of different frequencies the spectral lattice thermal conductivity S 
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was calculated at 25K and 80K. The parameters given in Table S1 were used to obtain the 
frequency dependence of S for SDTO, while in the case of undoped LNTO the low 
temperature part of its latt was first fitted to Equation S1 using the modified Callaway model 
for crystalline solids described above. The S calculated as a function of frequency for both 
compounds is given in Fig. S2. The mass fluctuation term results in a dramatic decrease in 
thermal conductivity of LNTO by disrupting phonon-mediated heat transport in a wide 
frequency range. In the case of SDTO the decrease in S resulting from the point defects is 
much less pronounced and takes place in a narrower frequency range, which is in line with 
the retained periodicity of the force constants and phonon crystal behaviour observed therein.

Extracting Charge Carrier Concentration from Seebeck Coefficient

The temperature dependence of Seebeck coefficient of an n-type semiconductor can be 
obtained by solving the Boltzmann transport equation.20 Assuming the parabolic dispersion 

relation for the conduction band , where k is the wave vector and m* is the 
𝜖 = (ℏ𝑘)2
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electron effective mass, and the power law energy dependence of the relaxation time 
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Given that doped STO single crystals have been previously shown to have relative low Fermi 
temperatures (300-1300K)21 the following formula 
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where z = 6 is the degeneracy of the conduction band, was used to estimate the electron 
concentration n. 
Initially, the charge carrier concentration in Sr0.9Dy0.1TiO3–δ derived from the mass gain upon 
reoxidation in air (Fig.S14a) was used to estimate the chemical potential via Equation S13 
and to fit the temperature dependence of the Seebeck coefficient to Equation S11. This 
resulted in the effective mass value (Table S4) very similar to the one reported for La-doped 
STO.3 In the case of La0.5Na0.5Ti0.8Nb0.2O3 the same procedure gave rise to a slightly higher 
value of the effective mass (Table S4), which was in very good agreement with the effective 
masses obtained theoretically for the heavy electrons in the dispersionless bands in LNTO for 
the values of tilt angle ranging from 3.25 to 6.5. Once the validity of the above approach 
has been tested on Sr0.9Dy0.1TiO3–δ and La0.5Na0.5Ti0.8Nb0.2O3 the concentration of charge 
carriers in La0.5Na0.5Ti0.95Nb0.05O3 and La0.5Na0.5Ti0.9Nb0.1O3 was estimated (Table S4) by 
fitting the temperature dependence of their respective Seebeck coefficients to Equation S11 
(Fig. S9) In these fits, the charge carrier concentration was considered a free parameter, while 
the effective mass was set equal to that previously obtained for La0.5Na0.5Ti0.8Nb0.2O3 and 
kept fixed during the first stages of fitting.
The mobility of the electrons at room temperature RT (Table S4) was estimated via the 
expression

 (S14)neRT 

using the values of electron concentration obtained as described above. The composition 
dependence of the electron concentration for Nb-doped LNTO is given in Fig. S9c.

Extracting Debye Temperatures from Heat Capacity Data
The temperature dependences of the heat capacities of Sr0.9Dy0.1TiO3–δ and 
La0.5Na0.5Ti0.8Nb0.2O3 were analysed in terms of Debye model, which is known to be precise 
at low enough temperatures where only the long wavelength acoustic phonon make a 
substantial contribution to the specific heat. Given the fact that both compounds were 
electronically conducting, the electronic contribution to their specific heat capacity was 
determined by fitting the isobaric heat capacity Cp below 10 K to the formula:
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where  and  are the coefficients related to electronic and lattice specific heat, respectively.
Plotting Cp/T3 as a function of temperature revealed deviation from Debye behaviour above 
10K that manifested itself as a broad peak centred at 25 K (Fig. S3a and b). Similar low-
temperature features were observed previously in SrTiO3 based materials and other 
thermoelectrics and were believed to arise from excessive density of states due to low lying 
dispersionless optical modes.17, 22-24 In such cases, the heat capacity should include an 
additional term to describe the contribution of independent Einstein oscillators vibrating with 
the same frequency:
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where R, r and E are the universal gas constant, effective number of oscillators and Einstein 
temperature, respectively. 
The quality of fits at high temperatures were substantially improved if two Debye terms with 
different characteristic temperatures were used to represent the lattice part of the specific heat 
(Fig. S3c and d). The need to include multiple Debye terms often results from dissimilar 
masses and/or bonding requirements of the atoms constituting the crystal lattice. This 
approach was used successfully to model Cp of both oxides and molecular solids.25, 26 The 
expression used to fit the temperature dependences of the heat capacities of Sr0.9Dy0.1TiO3–δ 
and La0.5Na0.5Ti0.8Nb0.2O3 is given by:
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where , , R, a, b, Da and Db are the Sommerfeld coefficient and Einstein contribution to 𝐶𝐸
𝑝

specific heat defined above, universal gas constant, relative weights of each Debye term and 
corresponding Debye temperatures, respectively. The variable of integration is given by 

kTx /h . 
The extracted Debye temperatures used to model the temperature dependence of κlatt were 
estimated by averaging:27

ba
ba DbDa

D 





 (S18)

The parameters used for the fitting of experimental Cp data to Equation S17 are given in 
Table S3.

Electronic structure calculation

All electronic band structure calculations of STO were performed using CRYSTAL14 at 
DFT/PBE0 level of theory.28-29 Reciprocal space sampling has been performed for all 
structures using a Monkhorst- Pack grid of 8 × 8 × 8 k-points for all structures. Standard all 
electron basis sets from the CRYSTAL online database (www. crystal.unito.it) have been 
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used for O and Ti (indicated by the following labels online: O_8−411d11G_valenzano_2006, 
Ti_86-411(d31)G_darco_unpub). For Sr, we have used a small-core relativistic effective core 
potential with a double-zeta quality valence basis set (indicated by Sr_m-S-
RSC_Heyd_2005_Heyd_2005 online). The initial structure of cubic STO in the 
rhombohedral cell (space group R c) without any octahedral tilting has been fully optimised, 3̅
which was then used as the starting point to generate STO structures with octahedral tilting. 
The two STO structures with different amounts of octahedral tilting were manually 
generated, by adjusting the oxygen fractional coordinates and lattice parameters, to ensure Ti-
O bond lengths remain the same. Subsequent band structure calculations were performed for 
the unoptimized structures (for STO with octahedral tilting). The full band structure of cubic 
STO (with zero tilting) is shown in Fig. S17.

Phonon calculation

The phonon calculations of STO and LNTO (with random La/Na distribution) were 
performed using CP2K at DFT/PBE level of theory,30-32 using the finite-displacement 
method. The CP2K code employs a mixed Gaussian/plane-wave basis set, and in the current 
study, we employed double-ζ polarization quality Gaussian basis sets,33 and a 400 Ry plane-
wave cutoff for the auxiliary grid, in conjunction with Goedecker−Teter−Hutter 
pseudopotentials.34, 35 For production quality calculations, we have used a convergence 
threshold of 1.0 × 10−8 Ha for the self-consistent field cycle, and structural optimizations 
were considered to have converged when the maximum force on all atoms falls below 1.0 × 
10−4 Ha Bohr−1. All calculations, including the electronic structure and phonons, were 
performed with the Γ-point approximation. In the finite-displacement method, the force 
constant, i.e the second derivatives of the total energy with respect to the atomic 
displacements, were computed numerically, and then the normal mode frequencies were 
obtained by diagonalization of the force constants matrix. In the current study, an atomic 
displacement of 0.01 Bohr was chosen to construct the force constants matrix. To ensure that 
force constants between atoms separated by large distances converge to zero, these 
calculations were performed in a very large rhombohedral supercell containing 640 atoms 
(with lattice constants ~22 Å). To characterise the difference of phonon modes in STO and 
LNTO, we calculated the  the mean distance between those atoms that participate to the 
greatest extent in a given phonon mode as defined by their displacement amplitudes, denoted 
as daverage, which indicates how far the vibration propagates and is given by:

(S19)
𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

1
𝑛∑

𝑖, 𝑗

𝑑𝑖𝑗

where i and j are atomic indices of the 10 atoms with the largest displacement amplitudes 
(determined from the eigenvector of a given phonon mode),  is the distance between atoms 𝑑𝑖𝑗

i and j (using minimum image convention), and n is the number of pairs of atoms (from the 
10 selected atoms; 45 in the current case).
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Table S1. Parameters used for modelling thermal conductivity of SrTiO3 (STO) and 
Sr0.9Dy0.1TiO3–δ (SDTO) through the Callaway model. The Debye temperature, D, and mean 
velocity of sound, vs, for STO are taken from the literature.19 These values for SDTO are 
extracted from fitting heat capacity data. Average grain size L, was estimated from SEM 
measurements. Values A, B, C, and D are all calculated constants of proportionality described 
in the above text. Parameter o is the resonance frequency and  is the damping factor and are 
obtained from modelling of the thermal conductivity data.
Material D,

[K]
vs,

[m s–1]
L,

[m]
A,

[s3]
B,

[s K–1]
C,
[s]

D,
[s–1]

o,
[Hz]



STO 670 5200 10 2.05×10-46 2.0×10-18 4.3×10–16 4.6×1011 3.3×1012 0.9
SDTO 558 4272 10 5.00×10-43 5.5×10-18 4.5×10–16 2.5×1011 3.3×1012 0.3
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Table S2. Structural parameters of La0.5Na0.5TiO3 obtained from Rietveld refinement against 
SXRD and high resolution NPD data (298 K). Coherent neutron scattering lengths: La = 8.24 
fm, Na = 3.63 fm, Ti = -3.438 fm, and O = 5.803 fm.33 La/Na and O sites are modelled using 
anisotropic displacement parameters. Space group = R c with dimensions a = b = 3̅
5.482286(6) Å, c = 13.41368(2) Å, γ = 120°, and calculated density = 5.05806(1) g cm–3. 
Refinement statistics are Rwp = 2.929, Rexp = 1.036, χ2 = 2.827.

Atom Wyckoff 
site x y z Occupancy 100 × Uiso 

[Å2]
La 6a 0 0 ¼ 0.501(3) 0.613(9)
Na 6a 0 0 ¼ 0.499(3) 0.613(9)
Ti 6b 0 0 0 1.00 0.517(5)
O 18e 0.54013(4) 0 ¼ 1.007(2) 1.115(15)

Atom U11 U22 U33 U12 U13 U23
La/Na 0.00389(7) 0.00389(7) 0.01062(16) 0.00194(4) 0 0

O 0.01040(13) 0.0084(3) 0.0140(3) 0.00421(15) -0.00247(10) -0.0049(2)
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Table S3. Parameters obtained through fitting Equation S12 to heat capacity data of 
Sr0.9Dy0.1TiO3–δ and La0.5Na0.5Ti0.8Nb0.2O3.
Material 

[J mol-1 K-2]
E
[K]

r A Da
[K]

b Db
[K]

D
[K]

Sr0.9Dy0.1TiO3–δ 1.34×10–2 144 0.1 1 232 3.533 650 558
La0.5Na0.5Ti0.8Nb0.2O3 4.5×10–3 137 0.45 1 280 3.433 700 605
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Table S4. Electron concentration n, effective mass m* and room temperature mobility RT for 
Sr0.9Dy0.1TiO3–δ and La0.5Na0.5Ti1-xNbxO3. The values of n and m* were extracted by fitting 
the temperature dependence of the Seebeck coefficient to Equation S11 , while RT was 
calculated using Equation S14.

Material n, 
[cm-3]

m*/mo RT,
[cm2 V-1 s-1]

Sr0.9Dy0.1TiO3–δ 14×1020 1.60 0.5
La0.5Na0.5Ti0.95Nb0.05O3 7×1020 2.15 1.0
La0.5Na0.5Ti0.9Nb0.1O3 16×1020 2.25 0.6
La0.5Na0.5Ti0.8Nb0.2O3 32×1020 2.23 0.8
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Table S5. Bond distances and angles as a function of Nb5+ substitution in the La0.5Na0.5Ti1–

xNbxO3 series obtained from Rietveld refinement against room temperature SXRD and high 
resolution NPD data.

x A–O [Å] Average
A–O [Å] B–O [Å] A–O/B–O B–O–B [°] ϕ [°]

0.0
3 × 2.5213(3),
6 × 2.74784(3),
3 × 2.9613(3)

2.7446(2) 1.95003(4) 1.4075 167.044(14) 7.914(10)

0.05
3 × 2.5311(7),
6 × 2.75380(7),
3 × 2.9629(7)

2.7504(4) 1.95378(10) 1.4077 167.31(4) 7.75(3)

0.10
3 × 2.54114(7),
6 × 2.75752(7),
3 × 2.95726(7)

2.7534(4) 1.95524(10) 1.4082 167.78(4) 7.45(3)

0.20
3 × 2.5525(10),
6 × 2.76119(9),
3 × 2.9555(10)

2.7576(5) 1.95771(13) 1.4086 168.19(4) 7.22(2)
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Table S6. Structural parameters of La0.5Na0.5Ti0.8Nb0.2O3 obtained from Rietveld refinement 
against SXRD and high resolution NPD data (298 K). Coherent neutron scattering lengths: La 
= 8.24 fm, Na = 3.63 fm, Ti = -3.438 fm, Nb = 7.054 fm, and O = 5.803 fm.37 La/Na and O 
sites are modelled using anisotropic displacement parameters. Space group = R c with 3̅
dimensions a = b = 5.508739(13) Å, c = 13.49234(8) Å, γ = 120°, and calculated density = 
5.22116(4) g cm–3. Refinement statistics are Rwp = 3.863, Rexp = 1.089, χ2 = 3.546.

Atom Wyckoff 
site X y z Occupancy 100 × Uiso

[Å2]
La 6a 0 0 ¼ 0.4992(16) 0.91(3)
Na 6a 0 0 ¼ 0.5008(16) 0.91(3)
Ti 6b 0 0 0 0.8 0.27(5)
Nb 6b 0 0 0 0.2 0.27(5)
O 18e 0.53658(10) 0 ¼ 0.998(4) 1.67(5)

Atom U11 U22 U33 U12 U13 U23
La/Na 0.0059(3) 0.0059(3) 0.01533(5) 0.0029(3) 0 0

O 0.0114(4) 0.0196(16) 0.0219(13) 0.0098(8) -0.0067(3) -0.0134(7)
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Table S7. Structural parameters of La0.5Na0.5Ti0.95Nb0.05O3 from Rietveld refinement against 
SXRD data only (298 K). Space group = R c with dimensions a = b = 5.493959(7) Å, c = 3̅
13.44522(4) Å, γ = 120°, and calculated density = 5.07375(2) g cm–3. Refinement statistics 
are Rwp = 2.247, Rexp = 0.854, χ2 = 2.631.

Atom Wyckoff 
site X y z Occupancy 100 × Uiso 

[Å2]
La 6a 0 0 ¼ 0.4996(5) 0.325(4)
Na 6a 0 0 ¼ 0.5004(5) 0.325(4)
Ti 6b 0 0 0 0.95 0.307(5)
Nb 6b 0 0 0 0.05 0.307(5)
O 18e 0.53929(13) 0 ¼ 1.0 0.954(17)
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Table S8. Structural parameters of La0.5Na0.5Ti0.9Nb0.1O3 from Rietveld refinement against 
SXRD data only (298 K). Space group = R c with dimensions a = b = 5.49881(6) Å, c = 3̅
13.46880(16) Å, γ = 120°, and calculated density = 5.10018(15) g cm–3. Refinement statistics 
are Rwp = 2.451, Rexp = 0.889, χ2 = 2.757.

Atom Wyckoff 
site X y z Occupancy 100 × Uiso 

[Å2]
La 6a 0 0 ¼ 0.4933(5) 0.397(3)
Na 6a 0 0 ¼ 0.5067(5) 0.397(3)
Ti 6b 0 0 0 0.9 0.363(4)
Nb 6b 0 0 0 0.1 0.363(4)
O 18e 0.53784(13) 0 ¼ 1.0 1.123(15)
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Table S9. Band gap energies obtained from direct Tauc plots of diffuse reflectance data for 
each material measured in this study.

Material Direct Tauc Band Gap [eV]
SrTiO3 3.27(5)
Sr0.9Dy0.1TiO3–δ 3.29(4)
La0.5Na0.5TiO3 3.32(4)
La0.5Na0.5Ti0.95Nb0.05O3 3.24(3)
La0.5Na0.5Ti0.9Nb0.1O3 3.24(5)
La0.5Na0.5Ti0.8Nb0.2O3 3.12(5)
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Table S10. Results of ICP-OES measurements on La0.5Na0.5Ti1–xNbxO3 materials. 
Concentrations have been normalized to titanium for comparison with the nominal 
stoichiometric compositions. Absolute errors are shown. 

Composition La Na Ti Nb
La0.5Na0.5TiO3 0.492(2) 0.495(7) 1.000(3) –
La0.5Na0.5Ti0.95Nb0.05O3 0.490(2) 0.472(8) 0.950(4) 0.048(1)
La0.5Na0.5Ti0.9Nb0.1O3 0.488(7) 0.459(8) 0.900(3) 0.096(2)
La0.5Na0.5Ti0.8Nb0.2O3 0.538(8) 0.471(7) 0.800(4) 0.206(1)
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Table S11. Theoretical (obtained from Rietveld refinement) and experimental densities of 
sintered pellets for each material measured in this study.

Material Theoretical density [g cm–3] Experimental density [%]
SrTiO3 5.13350(1) 98.8
Sr0.9Dy0.1TiO3–δ 5.3112(12) 94.9
La0.5Na0.5TiO3 5.05147(1) 98.0
La0.5Na0.5Ti0.95Nb0.05O3 5.07375(2) 98.0
La0.5Na0.5Ti0.9Nb0.1O3 5.10018(15) 97.0
La0.5Na0.5Ti0.8Nb0.2O3 5.22116(4) 98.0
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Table S12. Structural parameters of Sr0.1Dy0.1TiO3 from Rietveld refinement against SXRD 
data (298 K). Space group = I4/mcm with dimensions a = b = 5.511809(5) Å, c = 
7.809766(11) Å, and calculated density = 5.3112(12) g cm–3. Refinement statistics are Rwp = 
3.026, Rexp = 1.098, χ2 = 2.756.

Atom Wyckoff 
site X y z Occupancy 100 × Uiso 

[Å2]
Sr 4b 0 ½ ¼ 0.9110(6) 0.668(3)
Dy 4b 0 ½ ¼ 0.0889(6) 0.668(3)
Ti 4c 0 0 0 1.0 0.122(4)
O 4a 0 0 ¼ 0.984(3) 0.64(4)
O 8h 0.26960(13) 0.76960(13) 0 0.9944(17) 1.17(3)
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Table S13. Structural parameters of SrTiO3 from Rietveld refinement against SXRD data 
(298 K). Space group = Pm m with dimensions a = 3.909149(3) Å and calculated density = 3̅
5.13350(1) g cm–3. Refinement statistics are Rwp = 2.924, Rexp = 1.420, χ2 = 2.059.

Atom Wyckoff 
site X y z Occupancy 100 × Uiso 

[Å2]
Sr 1a 0 0 0 0.994(8) 0.449(2)
Ti 1b ½ ½ ½ 1.0351(8) 0.303(3)
O 3c 0 ½ ½ 1.0 0.639(6)
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Fig. S1. Rietveld refinements against a) SXRD (λ = 0.826119 Å) and high resolution NPD 
data measured on b) Bank 1 (backscattering 2θ = 168°) and c) Bank 2 (2θ = 90° bank) of 
HRPD at room temperature for La0.5Na0.5TiO3.
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Fig. S2. Calculated spectral thermal conductivity S for Sr0.9Dy0.1TiO3–δ at a) 25 K and b) 80 
K and La0.5Na0.5TiO3 at c) 25 K and d) 80 K, illustrating the contribution of different 
scattering mechanisms in decreasing S (cyan: grain boundaries, green: point defects and 
purple: resonant scattering).
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Fig. S3. Plots of Cp/T3 against T for a) Sr0.9Dy0.1TiO3–δ and b) La0.5Na0.5Ti0.8Nb0.2O3 
illustrating the non-Debye behaviour around ~25 K.  Specific heat capacity data of c) 
Sr0.9Dy0.1TiO3–δ and d) La0.5Na0.5Ti0.8Nb0.2O3 as a function of temperature. Red lines 
represent fits to the data using Equation S12. Density of states derived from the phonon 
calculations for SrTiO3 and La0.5Na0.5TiO3 highlighting the low-frequency excess density of 
states. The phonon density of states have been broadened using a Lorentzian line shape 
function, with a half width of 2 cm–1.

e f
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Fig. S4. SXRD (λ = 0.826119 Å) data measured on samples in the composition range 
La0.5Na0.5Ti1–xNbxO3. Pure samples were obtained up to x = 0.2, above which small amounts 
of LaNbO4 were observed. Composition dependence of the position of the 110 and 104 
reflections is highlighted in b).
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Fig. S5. Variation of a) octahedral tilt angle, ϕ, and B–O–B angle and b) B–O and average 
A–O distances as a function of x in La0.5Na0.5Ti1–xNbxO3. Octahedral tilt angles were 
determined through ϕ = arctan[2√3(x–0.5)], where x is the x-coordinate of the 18e oxide 
ion.38 Hollow points show materials studied through Rietveld refinement of both SXRD and 
high resolution NPD data, whilst filled points involved analysis of SXRD data only.
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Fig. S6. Rietveld refinements against a) SXRD (λ = 0.826119 Å) and high resolution NPD 
data measured on b) Bank 1 (backscattering 2θ = 168°) and c) Bank 2 (2θ = 90° bank) of 
HRPD at room temperature for La0.5Na0.5Ti0.8Nb0.2O3.
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Fig. S7. Rietveld refinements made against SXRD (λ = 0.826119 Å) data for the a) x = 0.05 
and b) x = 0.1 doped materials in the La0.5Na0.5Ti1–xNbxO3 solid solution.
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Figure S8. Tauc plots of direct band gaps calculated using the Kubelka-Munk function F(R) 
obtained from diffuse reflectance measurements for a) SrTiO3 and La0.5Na0.5TiO3, and b) 
Sr0.9Dy0.1TiO3, and La0.5Na0.5Ti1-xNbxO3 (where x = 0.05, 0.1 and 0.2).
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Fig. S9. Temperature dependence of a) electrical conductivity, σ, and b) Seebeck coefficient, 
S, for La0.5Na0.5Ti1–xNbxO3, where x = 0.05 (blue circles), 0.1 (red triangles) and 0.2 (black 
diamonds). Solid lines in b) show the results calculated using Equation S11. Data measured 
from Sr0.9Dy0.1TiO3–δ (green squares) are included for comparison purposes. c) Composition 
dependence of charge carrier concentration in La0.5Na0.5Ti1–xNbxO3.
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Fig. S10. Temperature dependence of power factors (S2σ) for La0.5Na0.5Ti1–xNbxO3 a), where 
x = 0.05 (blue circles), 0.1 (red triangles) and 0.2 (black diamonds). Data measured from 
Sr0.9Dy0.1TiO3–δ (green squares) are included for comparison purposes. Comparison of power 
factor as a function of x b) for La0.5Na0.5Ti1–xNbxO3 against data reported previously for 
SrTi1–xNbxO3 bulk materials at 900 K. Data are taken from the references shown in the key.39-

41
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Fig. S11. Temperature dependence of a) κlatt and b) κelec contributions to the thermal 
conductivity for La0.5Na0.5Ti1–xNbxO3, where x = 0.05 (blue circles), 0.1 (red triangles) and 
0.2 (black diamonds). Data measured from Sr0.9Dy0.1TiO3–δ (green squares) are included for 
comparison purposes. The electronic contribution to κ was estimated using the Wiedemann-
Franz law.5

a b
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Fig. S12. Scanning electron micrograph images for Sr0.9Dy0.1TiO3–δ (a-d) and 
La0.5Na0.5Ti0.8Nb0.2O3 (e-h).

a

c d

b

e f

g h



  

S37

Fig. S13. Rietveld refinements against SXRD (λ = 0.826119 Å) data measured from a) 
SrTiO3 and b) Sr0.9Dy0.1TiO3. The inset in b) shows the splitting of the 004 and 220 
reflections in tetragonal Sr0.9Dy0.1TiO3.
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Fig. S14. Relative weight change for a) Sr0.9Dy0.1TiO3 and b) La0.5Na0.5Ti0.8Nb0.2O3 as a 
result of oxidation from heating up to 1273 K under air. The data show oxidation to take 
place at approximately 750 K and 600 K for Sr0.9Dy0.1TiO3 and La0.5Na0.5Ti0.8Nb0.2O3, 
respectively. The materials were white in colour after cooling to room temperature.
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Fig. S15. Temperature dependence of the thermal diffusivity (α) for all materials in this 
study. 
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Fig. S16. Temperature dependence of the specific heat capacity (Cp) for all materials in this 
study. Error bars show 5% uncertainty. Dashed lines represent Cp values for STO (black), 
SDTO (blue), and LNTO (red) estimated from the Dulong-Petit law, Cp = 3nR, where R is the 
molar gas constant, 8.314 J K–1 mol–1 and n is the number of atoms per unit volume.



  

S41

Fig. S17. The full band structure of cubic STO (in a rhombohedral cell with R c space group 3̅
symmetry and with zero tilting). All the bands have been aligned to the Fermi level.
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