#### **Electronic Supplementary Information (ESI)**

# SnS Nanoparticles Electrostatically Anchored on Three-dimensional

# N-doped Graphene as an Active and Durable Anode for Sodium Ion

## **Batteries**

Xunhui Xiong,<sup>a</sup> Chenghao Yang,<sup>\*</sup> a Guanhua Wang,<sup>a</sup> Yuwei Lin,<sup>b</sup> Xing Ou,<sup>a</sup> Jeng-Han Wang,<sup>b</sup> Bote Zhao,<sup>c</sup> Meilin Liu,<sup>c</sup> Zhang Lin<sup>a</sup> and Kevin Huang<sup>\* d</sup>

<sup>a.</sup> Guangzhou Key Laboratory of Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.

E-mail: esyangc@scut.edu.cn; Tel: +86-803-39381203

<sup>b.</sup> Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan 11677.

<sup>c.</sup> School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.

<sup>d.</sup> Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29205, USA E-mail: huang46@cec.sc.edu

### **Experimental methods**

*Materials synthesis:* All the reagents used in the experiment were of analytical grade purity and used as received. Graphite oxide (GO) was prepared from graphite powder according to a modified Hummers' method. The as-obtained aqueous suspension of GO was diluted with deionized water under ultrasonication for 6 h to obtain an exfoliated graphene oxide (GO) suspension (~2 mg mL<sup>-1</sup>). The functionalization of GO with PDDA was achieved as follows: 50 ml of GO solution was loaded into a round-bottom flask, followed by adding 10 mL of PDDA solution (1 wt %) and sonication for 1 h until no visible particulate. At the same time, 0.55 g of commercial SnS<sub>2</sub> was added to a 20 mL of (NH<sub>4</sub>)<sub>2</sub>S solution under magnetic stirring until a clear and yellow solution was obtained. Then the yellow solution, PDDA

functionalized GO solution and dicyandiamide powders were mixed together by magnetic stirring and sonicated for another 1 h. The resultant dispersion was then frozen using liquid nitrogen, and subjected to a vacuum drying process for 24 h. Finally, the obtained porous powder was heated at 600 °C for 2 h under Ar atmosphere to yield SnS/3DNG hybrid. The SnS/3DG hybrid with the same content of graphene with SnS/3DNG and pure SnS were obtained from a similar process but without adding dicyandiamide powders or PDDA functionalized GO solution, respectively. The 3DNG was prepared by mixing PDDA functionalized GO solution and dicyandiamide powders, followed by freeze-drying and calcining. The Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/C hybrid cathode was prepared by a method reported previously.<sup>[23]</sup>

*Materials characterization*: The Zeta potentials of GO and GO-PDDA suspensions were measured using a Zetasizer 3000HS (Malvern Instruments). The X-ray diffraction (XRD) patterns of samples were collected from a Rigaku D/max 2500 using Cu K $\alpha$  radiation. Morphologies of prepared powders were investigated by a field-emission scanning electron microscopy (FESEM, Hitachi S-4800) and a transmission electron microscopy (TEM) and high resolution TEM (HRTEM) (TEM, JEM-2010, JEOL, 200 kV). Prior to TEM analysis, powders were ultrasonically dispersed in ethanol for 15 minutes. Surface characterization of elemental electronic states was examined by X-ray photoelectron spectroscopy (XPS, Thermo K-Alpha XPS spectrometer, Thermo Fisher Scientific) equipped with a monochromatic Al-K $\alpha$  X-ray source (hv = 1468.6 eV). Raman spectroscopy was performed using a Renishaw RM1000 equipped with a He-Ne laser at an excitation wavelength of 633 nm (Thorlab

HRP-170) through a 20x/0.40 objective. The BET-specific surface areas were obtained from nitrogen adsorption–desorption isotherm at the boiling point of liquid nitrogen (77 K) using a Micromeritics ASAP 2020 analyzer.

*Electrochemical tests*: Coin-type half-cells were assembled in an Ar glove box to investigate the sodiation/desodiation behaviors of the prepared anodes. A homogenous slurry was obtained by mixing the as-prepared powders with super P and carboxymethyl cellulose (70:15:15 in weight) in deionized water, followed by coating it on a copper foil and dried at 100°C under vacuum for 12 h. The typical thickness of the electrode is ~30  $\mu$ m with a packing density of about 1.1~1.3 g cm<sup>-3</sup>. The tailored Cu foil coated with active materials was used as work electrode with metallic sodium as the counter electrode, and glass fiber as the separator in a half-cell configuration. The electrolyte was a solution of 1 M NaClO<sub>4</sub> in propylene carbonate (PC) with 5% fluoroethylene carbonate (FEC) additive. Galvanostatic charge and discharge cycles were carried out using LAND CT2001A battery testing system (Wuhan, China) within a voltage range of 0.01-2.5 V based on the weight of the composite. Cyclic voltammetry (CV) measurements were made using IM6 electrochemical testing station running at 0.1 mV s<sup>-1</sup> from the open circuit potential to 0.01 V and then back to 2.5 V.

#### **Computational method**

The density functional theory (DFT) calculations were performed by Vienna *Ab initio* Simulation Package (VASP).<sup>[24]</sup> The computational method employed generalized gradient approximation (GGA) with Perdew-Wang 1991 formulation (PW91) for the exchange-correlation function.<sup>[25]</sup> The valance electrons were expanded by plane-wave basis with the cutoff energy at 600 eV to simulate the perodicity of the system and the core electrons were mimicked by the cost-effective pseudopotentials with projector-augmented wave method (PAW).<sup>[26]</sup> The Brillouin-Zone (BZ) integration was sampled by the Monkhorst-Pack scheme<sup>[27]</sup> with the sampling k-point at  $0.05 \times 2$  (1/Å) interval in the reciprocal space. The spin-polarization was applied for all the calculations. The graphene sheet was modeled by a 5×5 supercell, while the nitrogen doped graphene was a thiophene-like structure by replacing one carbon to nitrogen atoms. All the atoms were fully relaxed during the calculation. The structural optimization and energetic calculation were carried out by the quasi-Newton method with an energetic convergence of 1×10<sup>-4</sup> eV and gradient convergence of 1×10<sup>-2</sup> eV. The Van der Waal correction conducted by DFT-D2 method of Grimme<sup>[28]</sup> was employed for the adsorption energy calculation.

| Tuole of Zeta potentials (intermediatentents) of Go and (DD11 GO. |       |       |       |       |       |         |  |
|-------------------------------------------------------------------|-------|-------|-------|-------|-------|---------|--|
|                                                                   | 1     | 2     | 3     | 4     | 5     | Average |  |
| GO                                                                | -34.0 | -33.8 | -34.0 | -34.3 | -34.4 | -34.1   |  |
| PDDA-GO                                                           | 60.9  | 61.3  | 61.5  | 61.6  | 61.2  | 61.3    |  |

Table S1 Zeta potentials (five measurements) of GO and PDDA-GO.



Figure S1 SEM images of (a) SnS/3DNG and (b) pure SnS prepared with similar method.



Figure S2 XRD patterns of powers obtained by calcining SnS/3DNG in air to 800 °C.



Figure S3 (a) Survey XPS spectra of GO and SnS; (b) TEM image of 3DNG and EDS analysis of the selected area; (c) high-resolution XPS spectra of C 1s GO; (d) high-resolution XPS spectra of Sn 3d in SnS and SnS<sub>2</sub>.



Figure S4 SEM images of SnS/N-doped graphene hybrid obtained by air drying method showing dense agglomerates.



Figure S5  $N_2$  isotherms and calculated BET specific surface area of SnS/N-doped graphene: (a) freeze drying and (b) drying in air.



Figure S6 SEM image of SnS/3DNG showing agglomerated SnS nanoparticles on both sides of 3DNG.



Figure S7 The particle size distribution of SnS on 3DNG.



Figure S8 (a)-(b) SEM image (showing SnS unevenly distributed on graphene) and (c)-(d) TEM image of SnS/3DNG using unfunctionalized GO (graphene content in the hybrid is about 8.0 wt %), showing the SnS NPs are heavily agglomerated.

| Reaction                                                             | Voltage range (V, vs. Na <sup>+</sup> /Na) |  |  |
|----------------------------------------------------------------------|--------------------------------------------|--|--|
| Sn+Na→Na <sub>x</sub> Sn                                             | 0.41-0.45                                  |  |  |
| Na <sub>x</sub> Sn+Na→α-NaSn <sub>2</sub>                            | 0.15-0.18                                  |  |  |
| a-NaSn₂+Na→Na <sub>9</sub> Sn <sub>4</sub>                           | 0.06-0.08                                  |  |  |
| Na <sub>9</sub> Sn <sub>4</sub> +Na→Na <sub>15</sub> Sn <sub>4</sub> | 0.01-0.03                                  |  |  |

Table S2 Alloying reaction for the sodium-tin system in the ranges of 0.01-0.45V



Figure S9 Ex situ XRD patterns of the SnS/3DNG anode collected at various states as indicated in the corresponding voltage profile: (a) fresh state; (b) after the first discharge to 0.8 V; (c) after the first discharge to 0.05 V; (d) after the first charge to 1.0 V, and (e) after the first charge to 2.4 V.



Figure S10 (a) The second charge-discharge curves of 3DNG at 100 mA  $g^{-1}$  and (b) the cycle performance at 2 A  $g^{-1}$ .



Figure S11 TG curve of the SnS/3DG hybrid in air with a heating rate of 2 °C min<sup>-1</sup> and air flow of 100 mL min<sup>-1</sup>.



Figure S12 Comparison of the initial and after-rate-test charge-discharge profiles of SnS/3DNG anode at 0.1 A  $g^{-1}$ .



Figure S13 Nyquist plots of (a) SnS/3DNG and (b) SnS/3DG after different cycles at  $0.1 \text{ A g}^{-1}$  in a fully sodiation state (0.01V) from 1MHz to 10 mHz.

|          | Materials                      | Capacity                             | Retention | Reference          |
|----------|--------------------------------|--------------------------------------|-----------|--------------------|
| Ref. S1  | SnS/graphene                   | 308 mAh g <sup>-1</sup> after 300    | 88%       | ACS Nano 2014, 8:  |
|          |                                | cycles at 7.29 A g <sup>-1</sup>     |           | 8323               |
| Ref. S2  | SnS Nano-honeycomb             | 1010 mAh g <sup>-1</sup> after 200   | 88.1%     | Nat. Comm.2016, 7, |
|          | /graphene foam                 | cycles at0.1 A g <sup>-1</sup>       |           | 12122              |
| Ref. S3  | SnS <sub>2</sub> -RGO          | 500 mAh g <sup>-1</sup> after 400    | 84%       | Adv. Mater. 2014,  |
|          |                                | cyclesat1 A g <sup>-1</sup>          |           | 26: 3854           |
| Ref. S4  | SnS <sub>2</sub> /rGO          | 300 mAh g <sup>-1</sup> after 1000   | 61%       | Adv. Funct. Mater. |
|          |                                | cycles at 0.8 A g <sup>-1</sup>      |           | 2015, 25: 481      |
| Ref. S5  | SnS <sub>2</sub> /amino-       | 480 mAh g <sup>-1</sup> after 1000   | 85%       | Energy Environ.    |
|          | Functionalized                 | cycles at 1 A g <sup>-1</sup>        |           | Sci.2016,9: 1430   |
|          | graphene                       |                                      |           |                    |
| Ref. S6  | 3D SnS/C                       | 535 mAh g <sup>-1</sup> after 300    | 80%       | Adv. Sci. 2015, 2, |
|          |                                | cycles at 1 A g <sup>-1</sup>        |           | 1500200            |
| Ref. S7  | C@SnS/SnO <sub>2</sub> @graphe | 360 mAh g <sup>-1</sup> after 500    | 76%       | Angew. Chem. Int.  |
|          | ne                             | cycles at 2.43 A g <sup>-1</sup>     |           | Ed. 2016, 55: 3408 |
| Ref. S8  | SnS-C                          | 433 mAh g <sup>-1</sup> after 50     | 89%       | Nano Research      |
|          |                                | cycles at 0.5 A g <sup>-1</sup>      |           | 2015, 8: 1595      |
| Ref. S9  | SnS-C                          | 548 mAh g <sup>-1</sup> after 80     | 97%       | J. Mater. Chem. A  |
|          |                                | cycles at 0.1 A g <sup>-1</sup>      |           | 2014, 2: 16424     |
| Ref. S10 | SnS@RGO                        | 386 mAh g <sup>-1</sup> after 100    | 94%       | J. Power Sources   |
|          |                                | cycles at 0.1 A g <sup>-1</sup>      |           | 2015, 293: 784     |
| Ref. S11 | exfoliated-                    | 610 mA h g <sup>-1</sup> after 300   | 100%      | Nanoscale2015, 7:  |
|          | SnS <sub>2</sub> /graphene     | cycles at 0.2 A g <sup>-1</sup>      |           | 1325               |
| Ref. S12 | SnO <sub>2</sub> -RGO          | 330 mA h g <sup>-1</sup> after 150   | 81.3%     | J. Mater. Chem. A  |
|          |                                | cycles at 0.1 A g <sup>-1</sup>      |           | 2014, 2: 529       |
| Ref. S13 | 8-Sn@C                         | 415 mAh g <sup>-1</sup> after 500    | 97.6%     | Adv. Func. Mater.  |
|          |                                | cycles at 1 A g <sup>-1</sup>        |           | 2015, 25: 214      |
|          | SnS/3DNG                       | 509.9 mAh g <sup>-1</sup> after 1000 | 87.1%     | Our work           |
|          |                                | cycles at 2 A g <sup>-1</sup>        |           |                    |

Table S3 Comparison of cycling performance of SnS/3DNG with previously reported Sn-based anodes for SIB



Figure S14 The capacities of the SnS/3DNG electrode with different active materials loading at 4 A g<sup>-1</sup>.



Figure S15 (a) CV curves of SnS/3DNG obtained at different scan rates; (b) capacitive (red) and diffusion-controlled (blue) contributions to charge storage of SnS/3DNG at 0.2 mVs<sup>-1</sup>; (c) normalized contribution ratio of capacitive (red) and diffusion-controlled (blue) capacities at different scan rates.



Figure S16 The charge-discharge profile of SnS/3DNG anode at 6A g<sup>-1</sup>, showing a plateaus at 1.1 V, followed by a long slope.



Figure S17 (a) XRD pattern of  $Na_3V_2(PO_4)_3/C$  composite and (b) charge/discharge profiles at current density of 0.2 A g<sup>-1</sup>.



Figure S18 (a)-(b) SEM images of SnS/3DG and (c)-(d) SnS/3DNG after 1,000 cycles at 2 A  $\rm g^{-1}$ 



Fig. S19 TEM image and the corresponding C, N, S, and Sn elemental maps of the SnS/3DNG electrode after 1,000 charge/discharge cycles.



Fig. S20 High-resolution XPS spectra of N 1s and Sn 3d in SnS/3DNG. The negative shift of Sn 3d peaks in binding energy, indicating electron clouds still being biased from 3DNG to SnS after extensive cycling.