Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

Environmental Analysis of Perovskites and Other Relevant Solar Cell Technologies in a Tandem Configuration

Ilke Celik¹, Adam B. Philips², Song Zhaoning², Yanfa Yan², Randy J. Ellingson², Michael J. Heben², and Defne Apul^{1*}

¹ School of Solar and Advanced Renewable Energy, Department of Civil Engineering, University of Toledo 2801 W. Bancroft St., Toledo, OH 43606, USA

² School of Solar and Advanced Renewable Energy, Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo 2801 W. Bancroft St., Toledo, OH 43606, USA

*Corresponding author, defne.apul@utoledo.edu

Table of Tables

Table S. 1 The material inventories for Si-PK preparation	.2
Table S. 2 The material inventories for CIGS-PK preparation	.2
Table S. 3 The material inventories for CZTS-PK preparation	.2
Table S. 4 The material inventories for PK-PK preparation	.3
Table S. 5 Material and energy inventory of manufacturing 1 m ² of NiO layer	.3
Table S. 6 Material and energy inventory of manufacturing 1 m ² of MoO ₃ layer	.3
Table S. 7 Material and energy inventory of manufacturing 1 m ² of ZnO/ZnO:Al layer	.4

Layers	Thicknesses (m)	Mass (kg/m ²)	Reference
ITO	1.10E-07	7.90E-04	[1]
MoO ₃	1.00E-08	4.69E-05	This study
Spiro-OMeTAD	1.50E-07	1.59E-04	[1]
Perovskite	3.50E-07	6.09E-04	[2]
PCBM	2.00E-08	3.00E-05	[3]
ZnO:In	3.00E-08	2.10E-04	[4]
p-aSi	1.00E-08	2.33E-05	[5]
i-aSi	5.00E-09	1.17E-05	[5]
n-type FZ Si wafer	3.00E-04	6.99E-01	[6]
i-aSi	5.00E-09	1.17E-05	[5]
n-aSi	1.00E-08	2.33E-05	[5]
ITO	8.00E-08	5.74E-04	[1]
Ag	1.00E-07	1.05E-03	[7]

Table S. 1 The material inventories for Si-PK preparation

Table S. 2 The material inventories for CIGS-PK preparation

Layers	Thicknesses (m)	Mass (kg/m²)	Reference
FTO Coated Glass	1.00E-03	2.50E+00	[1]
mp-TiO ₂	2.00E-07	8.46E-04	[1]
Perovskite	3.00E-07	6.09E-04	[2]
Spiro-OMeTAD	2.00E-07	2.12E-04	[1]
MoO ₃	1.00E-08	4.69E-05	This study
ZnO/ZnO-Al	1.30E-07	2.81E-04	This study
CdS	5.00E-08	2.41E-04	[4]
CIGS	2.00E-06	1.14E-02	[6]
Мо	6.00E-07	6.17E-03	[4]
Glass	1.00E-03	2.50E+00	[2]

Table S. 3 The material invent	cories for CZTS-PK preparation
--------------------------------	--------------------------------

Layers	Thicknesses (m)	Mass (kg/m²)	Reference
Glass	1.00E-03	2.50E+00	[2]
Мо	6.00E-07	6.17E-03	[4]
CZTS	2.00E-06	9.20E-03	[4]
CdS	3.00E-08	1.45E-04	[4]
ITO	5.00E-08	3.59E-04	[1]
PEDOT:PSS	5.00E-08	5.00E-05	[8]
Perovskite	3.00E-07	6.09E-04	[2]
PCBM	2.00E-08	3.00E-05	[3]
Al	1.00E-07	2.70E-04	[2]

Table S. 4 The material inventories for PK-PK preparation

ITO	200	1.79 E-03	[3]
NiO	10	8.33 E-05	This study
CH3NH3Pbl ₃	350	6.09 E-04	[2]
PCBM	10	1.25 E-05	[3]
ITO	100	8.95 E-04	[3]
PEDOT:PSS	30	3.75 E-05	[8]
CH3NH3Snl ₃	350	4.37 E-04	[9]
PCBM	10	1.25 E-05	[3]
Ag	80	1.05 E-03	[3]

Table S. 5 Material and energy inventory of manufacturing 1 m² of NiO layer (10 nm)

Layer		Unit	Amount
М	Nickel, at plant	kg	1.66 E-06
М	Oxygen, liquid, at plant	kg	4.58 E-08
E	Heat consumption	MJ	1.40 E+00
E	UCTE Electricity, production mix	MJ	9.98 E-01
W	Deposition waste	kg	1.50 E-05
W	Waste Heat	kg	1.40 E+00

Table S. 6 Material and energy inventory of manufacturing $1 m^2$ of MoO₃ layer (10 nm)

Layer		Unit	Amount
М	Molybdenum disulfide, at plant	kg	6.80 E-03
М	Oxygen, at plant	kg	2.93 E-04
E	UCTE Electricity, production mix	MJ	5.96 E-01
W	Sulfur Oxides	kg	5.37 E-03
W	Deposition waste	kg	4.69 E-05

Layer		Unit	Amount
М	Aluminum, at plant	kg	2.70 E-04
М	Methanol, at plant	kg	3.48 E-04
М	Acetic acid, 98 % in H2O, at plant	kg	2.95 E-06

Table S. 7 Material and energy inventory of manufacturing 1 m² of ZnO/ZnO:Al layer (130 nm)

М	Hydrogen peroxide, 50 % in H2O, at plant	kg	7.81 E-11
Μ	n-butanol, at plant	kg	2.32 E-04
Μ	Potassium hydroxide, at regional storage	kg	2.70 E-06
Μ	Zinc oxide, at plant	kg	3.74 E-04
E	UCTE Electricity, production mix	MJ	1.34 E+01
W	Deposition waste	kg	7.03 E-05

References

- 1. Gong, J., Darling, S., and You, F. (2015) Perovskite Photovoltaics: Life-Cycle Assessment of Energy and Environmental Impacts. *Energy Environ. Sci.*, **8** (7), 1953–1968.
- 2. Celik, I., Song, Z., Cimaroli, A.J., et al. (2016) Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. *Sol. Energy Mater. Sol. Cells*, **156**, 157–169.
- 3. Espinosa, N., García-Valverde, R., Urbina, A., and Krebs, F.C. (2011) A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. *Sol. Energy Mater. Sol. Cells*, **95** (5), 1293–1302.
- 4. Collier, J., Wu, S., and Apul, D. (2014) Life cycle environmental impacts from CZTS (copper zinc tin sulfide) and Zn3P2 (zinc phosphide) thin film PV (photovoltaic) cells. *Energy*, **74**, 314–321.
- 5. Louwen, A., van Sark, W.G.J.H.M., Schropp, R.E.I., et al. (2015) Life-cycle greenhouse gas emissions and energy payback time of current and prospective silicon heterojunction solar cell designs. *Prog. Photovoltaics Res. Appl.*, **23** (10), 1406–1428.
- 6. Ecoinvent v.3.1.
- 7. Celik, I., Mason, B.E., Phillips, A.B., et al. (2017) Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes. *Environ. Sci. Technol.*, acs.est.6b06272.
- Roes, A.L., Alsema, E.A., Blok, K., and Patel, M.K. (2009) Ex-ante environmental and economic evaluation of polymer photovoltaics. *Prog. Photovoltaics Res. Appl.*, **17** (6), 372–393.
- Serrano-Lujan, L., Espinosa, N., Larsen-Olsen, T.T., et al. (2015) Tin- and lead-based perovskite solar cells under scrutiny: An environmental perspective. *Adv. Energy Mater.*, 5 (20), 1–5.