Supplementary Materials for:

Ultrahigh thermoelectric performance in Cu₂Se-based hybrid

materials with highly dispersed molecular CNTs

Raghavendra Nunna,¹† Pengfei Qiu,¹† Meijie Yin,² Hongyi Chen,^{1,3} Riley Hanus,⁴ Qingfeng Song,^{1,3} Tiansong Zhang,¹ Mei-Yin Chou,⁵ Matthias T. Agne,⁴ Jiaqing He,² G. Jeffrey Snyder,^{4*} Xun Shi,^{1*} Lidong Chen^{1*}

¹State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China.

²Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China.

³University of Chinese Academy of Sciences, Beijing 100049, China.

⁴ Materials Science and Engineering, Northwestern University, Evanston IL 60208, USA.

⁵ Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.

+These authors contributed equally to this work.

*Correspondence to: jeff.snyder@northwestern.edu; xshi@mail.sic.ac.cn; cld@mail.sic.ac.cn.

DFT Calculation

Density-functional theory (DFT) calculations were performed with the projector-augmented wave (PAW) method as implemented in the highly efficient Vienna Ab Initio Simulation Package (VASP). Regular Monkhorst-Pack k-point meshes (where k is the electron wavevector) of $1 \times 1 \times 10$ in Cu-CNT(4,4) and $3 \times 3 \times 1$ in Cu-graphene(7×7 supercell) were used. The cutoff energies are 400 eV. An energy convergence criterion of 10 E^{-5} eV implemented by the Perdew-Becke-Ernzerhof (PBE) is used.

Details about the κ_{min} predication for Cu₂Se

Using the *diffuson* picture of Allen and Feldman^{1,2} where diffusons are nonlocalized, non-propagating oscillations that can carry heat, an estimation of the minimum κ_L , κ_{min} , can be determined phenomenologically by modifying the Einstein model of thermal conductivity (to be reported elsewhere). The result, in the high temperature limit, gives the minimum thermal conductivity in terms of the number density of atoms, *n*, and the average frequency of the vibrational density of states, ω_{avg} :

$$\kappa_{min} = \frac{n^{\frac{1}{3}}k_B}{\pi}\omega_{avg} \tag{1}$$

Using the phonon density of states reported by³, $\omega_{avg} = 16 \text{ meV}$, and taking $n = 6.024 \times 10^{28} \text{ atoms/m}^3$ from ICSD data, $\kappa_{min} = 0.42 \text{ W/mK}$ for Cu₂Se. Additionally, it was found empirically that ω_{avg} is highly correlated with the speed of sound through the maximum Debye frequency⁴. Making the appropriate substitutions, Eq. 1 can be reduced to:

$$\kappa_{min} \approx 0.77 \ n^{2/3} k_B v_s \quad (2)$$

Keeping *n* the same as above and using $v_s = \frac{1}{3}(v_L + 2v_T) \approx 1726 \text{ m/s}$ gives the estimation for the minimum κ_L of the Cu₂Se/CNT composites reported in the main text. We note that this estimation ($\kappa_{min} = 0.28 \text{ W/mK}$) is much lower than the value predicted by the Cahill-Pohl equation ($\kappa_{min} = 0.44 \text{ W/mK}$).

Details about the X_d calculation for Cu₂Se

The thickness of the fully depleted layer (X_d) in Cu₂Se/CNTs hybrid materials can be calculated by the depletion approximation⁵

$$X_{d} = \left(\frac{2\varepsilon\Delta V}{qN_{d}3}\right)^{1/2},$$
 (3)

where ε is the dielectric constant of nearly stoichiometric Cu₂Se⁶, $\varepsilon = 11$, ΔV is the built-in potential in the interfacial area, equaling to the difference in work functions between Cu₂Se and CNT, q is elementary charge, and N_d is the carrier concentration in Cu₂Se.

References

1. Allen, P. B.; Feldman, J. L.: Thermal conductivity of disordered harmonic solids. Physical Review B 1993, 48, 12581.

2. Allen, P. B.; Feldman, J. L.; Fabian, J.; Wooten, F.: Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si. Philos. Mag. B 1999, 79, 1715-1731.

3. Liu, H.; Yang, J.; Shi, X.; Danilkin, S. A.; Yu, D.; Wang, C.; Zhang, W.; Chen, L.: Reduction of thermal conductivity by low energy multi-Einstein optic modes. Journal of Materiomics 2016, 2, 187-195.

4. M.T. Agne, et al. In preparation.

5. D. A. Neamen, Semiconductor Physics and Devices, Basic Principles, New York: The McGraw-Hill Companies, Inc.

6. O. Madelung, Physics of Non-tetrahedrally Bonded Binary Compounds II, Berlin: Springer Verlag.

Figure S1 to S4

Fig. S1 Charge density of the Cu-graphene system when putting a Cu atom on the surface of graphene with a vertical distance d = 1.8 Å.

Fig. S2 Fractured secondary electron images of the SPS-sintered Cu₂Se/CNTs hybrid materials. (A) Cu₂Se; (B) Cu₂Se/0.25% wt CNTs; (C) Cu₂Se/0.75% wt CNTs. (D) is the high-magnification image of (C).

Fig. S3 TE properties of $Cu_2Se/x\%$ wt CNTs hybrid materials measured in the heating and cooling processes. (A) Seebeck coefficient, (B) electrical conductivity, and (C) thermal conductivity for $Cu_2Se/0.5\%$ wt CNTs.

Fig. S4 Temperature dependence of heat capacity (C_P) for Cu₂Se/x% wt CNTs (x = 0, 0.25, 0.5 and 0.75) hybrid materials.