Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)†

for

Materials Design of High-capacity Li-rich Layered-Oxide Electrodes:

Li₂MnO₃ and Beyond

Soo Kim,^{a ||} Muratahan Aykol,^{az ||} Vinay I. Hegde,^{a ||} Zhi Lu,^a Scott Kirklin,^a

Jason R. Croy,^b Michael M. Thackeray,^b and Chris Wolverton*^a

^a Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States

^b Chemical Sciences and Engineering Division, Argonne National Laboratory,

9700 South Cass Avenue, Argonne, Illinois 60439, United States

^z Current Address: Toyota Research Institute,

4440 El Camino Real, Los Altos, California 94022, United States

*Correspondence: <u>c-wolverton@northwestern.edu</u>

^{II} *These authors equally contributed to this work.*

Table S1. Thermodynamically stable and nearly-stable Li₂MO₃ compounds determined with a high-throughput density functional theory (HT-DFT) calculation within the OQMD framework.^{33,34} The lowest DFT energy crystal structure, the formation energy, and the distance to the convex-hull are shown. A compound that is on the convex-hull of the Li-M-O system (*i.e.*, has a distance of ≤ 0 meV/atom from it) is considered stable. For all such stable compounds, the negative distances are given below, which measure the distance of the compound from the convex-hull excluding the compound itself, to merely provide an approximate measure of its stability. In addition, a distance on or within ~25 meV/atom of the convex-hull is to be considered as a nearly-stable compound.

Chemical compound	Lowest-energy crystal structure	Formation energy [eV/atom]	Distance to the convex-hull [meV/atom]	Stability
Li ₂ TiO ₃	<i>C2/m</i>	-2.823	-77	Stable
Li ₂ VO ₃	<i>C2/m</i>	-2.457	+23	Nearly-stable*
Li ₂ CrO ₃	<i>C2/m</i>	-2.228	-15	Stable
Li_2MnO_3	$C2/c^{\dagger}$	-2.117	-115	Stable
Li ₂ FeO ₃	<i>C2/m</i>	-1.855	-24	Stable
Li ₂ CoO ₃	<i>C2/m</i>	-1.702	-60	Stable
Li ₂ NiO ₃	<i>C2/m</i>	-1.519	-15	Stable
Li ₂ GeO ₃	Cmc21	-2.186	+19	Nearly-stable**
Li ₂ ZrO ₃	Сс	-2.879	+28	Nearly-stable**
Li ₂ MoO ₃	<i>C2/m</i>	-2.203	+23	Nearly-stable*
Li ₂ RuO ₃	$C2/c^{\dagger}$	-1.741	-67	Stable
Li ₂ RhO ₃	<i>C2/m</i>	-1.644	-92	Stable
Li_2PdO_3	<i>C2/m</i>	-1.512	-100	Stable
Li ₂ SnO ₃	<i>C2/m</i>	-2.130	-107	Stable
Li ₂ HfO ₃	<i>C2/m</i>	-3.028	-119	Stable
Li ₂ OsO ₃	<i>C2/m</i>	-1.708	-24	Stable
Li ₂ IrO ₃	<i>C2/m</i>	-1.611	-45	Stable
Li ₂ PtO ₃	<i>C2/m</i>	-1.564	-91	Stable
Li ₂ PbO ₃	$C2/c^{\dagger}$	-1.674	-29	Stable

[†] The C2/c structure is very similar to the C2/m structure: both are monoclinic, with six-fold and three-fold axes of symmetry respectively. Therefore, for the purposes of this study, we do not distinguish between these two structures.

* According to our DFT calculations, we find that both Li_2MoO_3 and Li_2VO_3 decompose to other stable phase (or phase mixtures). We find this to be consistent with *Ref.* 21, where Li_2MoO_3 decomposes to amorphous Li_2MoO_4 and MoO_3 when exposed to air. In *Ref.* 47, Li_2VO_3 was synthesized by a high-energy-ball-milling technique to yield a disordered cubic $Fm\overline{3}m$ structure.

** There are other polymorphs that we find them to be more stable in our OQMD database^{33,34} for Li₂GeO₃ (*Cmc21*)⁴⁸ and Li₂ZrO₃ (*Cc*)²⁵. Since the formation energies between these crystal structures and *C2/m* Li₂MO₃ are very close (within ~25 meV/atom), we believe that Li₂GeO₃ and Li₂ZrO₃ in *C2/m* structures can be synthesized when the experiments are designed carefully in order to find suitable synthesis conditions.

Figure S1. Critical oxygen chemical potential plots of Li₂MO₃ compounds: The stabilities of the Li₂MO₃ species with varying oxygen chemical potentials are shown. Each compound has the lower and upper limits of the oxygen chemical potentials, where it can decompose to other stable phase mixtures outside of this window. Critical oxygen chemical potential plots of: a) Li₂TiO₃, b) Li₂CrO₃, c) Li₂MnO₃, d) Li₂FeO₃, e) Li₂CoO₃, f) Li₂NiO₃.

Figure S1. (cont.) g) Li₂RuO₃, h) Li₂RhO₃, i) Li₂PdO₃, j) Li₂SnO₃, k) Li₂HfO₃, l) Li₂OsO₃.

Figure S1. (*cont.*) m) Li₂IrO₃, n) Li₂PtO₃, and o) Li₂PbIrO₃. We observe relatively narrow oxygen chemical potential windows for Li₂CrO₃, Li₂FeO₃, Li₂NiO₃, and Li₂OsO₃ in panels b), d), f), and l), respectively. These compounds may be more difficult to be synthesized. For example, we predict that Li₂CrO₃ may contain impurities such as LiCrO₂ in the oxygen-deficient condition and Li₂CrO₄ in the oxygen-rich condition, as shown in panel b). Similarly, Li₂FeO₃ may contain impurities such as Li₅FeO₄ and LiFeO₂, as shown in panel d); and, Li₂NiO₃ and Li₂OsO₃ may contain impurities such as Li₂NiO₂ and Li₃Os₂O₆ during the synthesis [see panels f) and l), respectively].

Figure S2. Calculated voltage steps of Li₂MO₃: We have considered the following delithiation steps: Li₄M₂O₆ \rightarrow Li₃M₂O₆ \rightarrow Li₂M₂O₆ \rightarrow M₂O₆ and report the reactions with the stable intermediate species with respect to the Li₂MO₃-MO₃ convex-hull. Calculated voltage steps of: a) Li₂TiO₃, b) Li₂VO₃, c) Li₂CrO₃, d) Li₂MnO₃, e) Li₂FeO₃, f) Li₂CoO₃.

Figure S2. (cont.) g) Li₂NiO₃, h) Li₂GeO₃, i) Li₂ZrO₃, j) Li₂MoO₃, k) Li₂RuO₃, l) Li₂RhO₃.

Figure S2. (*cont.*) m) Li₂PdO₃, n) Li₂SnO₃, o) Li₂HfO₃, p) Li₂OsO₃, q) Li₂IrO₃, r) Li₂PtO₃, and s) Li₂PbO₃ (please note a different y-axis scaling for panel s).

Stable	Nearly-stable
Li _{2-x} MO ₃ cathodes	Li _{2-x} MO ₃ cathodes
Li _{1.5} RuO ₃	LiRuO3
Li1.5OsO3	Lio.5RuO3
Lio.5IrO3	RuO ₃
IrO ₃	Li1.5RhO3
	LiRhO3
	LiOsO3
	Li _{0.5} OsO ₃
	OsO3
	Li _{1.5} IrO ₃
	Li _{1.5} PtO ₃
	LiPtO ₃

Table S2. Stable and nearly-stable delithiated cathode structures: These cathode structures

 will be more stable against decomposition into other phases during charging process.

Table S3. Oxygen vacancy formation energy: We have removed the lowest energy oxygen atom in the DFT supercell in order to calculate the oxygen vacancy formation energy for Li₂MO₃, Li_{1.5}MO₃ and MO₃ cathode compounds.

Chemical compound	Li ₈ M ₄ O ₁₂ to Li ₈ M ₄ O ₁₁	Li ₆ M ₄ O ₁₂ to Li ₆ M ₄ O ₁₁	M ₄ O ₁₂ to M ₄ O ₁₁				
	[eV/vacancy]	[eV/vacancy]	[eV/vacancy]				
Li ₂ TiO ₃	5.772	-1.362	-8.927	-			
Li ₂ VO ₃	4.337	0.830	-2.502				
Li ₂ CrO ₃	2.490	1.028	-3.742				
Li ₂ MnO ₃	2.548	0.481	-1.620				
Li ₂ FeO ₃	0.726	0.228	-2.036				
Li ₂ CoO ₃	2.347	0.996	-0.023				
Li ₂ NiO ₃	0.900	0.044	-0.325				
Li ₂ GeO ₃	4.902	-1.054	-3.768				
Li ₂ ZrO ₃	6.569	-1.176	-7.238				
Li ₂ MoO ₃	4.631	4.377	0.711				
Li ₂ RuO ₃	2.934	3.033	0.287				
Li ₂ RhO ₃	2.522	2.061	-0.071				
Li ₂ PdO ₃	1.992	1.092	0.170				
Li_2SnO_3	4.120	-1.546	-3.251				
Li ₂ HfO ₃	6.882	-0.977	-1.457				
Li ₂ OsO ₃	3.278	3.276	1.341				
Li ₂ IrO ₃	2.592	2.714	2.046				
Li ₂ PtO ₃	2.225	1.925	0.851				
Li ₂ PbO ₃	1.997	-1.624	-10.481				

Figure S3. Oxygen vacancy formation energies (per vacancy) *vs.* delithiation voltages of Li₂MO₃ (Li₈M₄O₁₂), Li_{2- δ}MO₃ (Li₆M₄O₁₂), and MO₃ (M₄O₁₂) cathode materials: Every possible oxygen sites in the DFT cells are evaluated to remove the lowest energy oxygen atom for each composition. The *x*-axis indicates the delithiation voltage at each composition of cathode compounds adapted from Fig. 2. Here, it is possible to determine at which voltage the oxygen loss occurs for each Li_{2-x}MO₃ system (*i.e.*, when $\Delta E_{vac,O}$ becomes negative). The oxygen vacancy formation energies are subtracted by the oxygen chemical potential corresponding to 300 K.

Table S4. Metal-migration tendency in Li_{1.5}MO₃, Li_{1.5}MO_{3- δ}, MO₃, and MO_{3- δ}: The DFT formation energy (Δ H_f) was calculated for both the pristine-structure (PS) and the metal-migrated-structure (MMS). For MMS, the metal was placed to the energetically most favorable empty Li-site. The positive energy difference indicates the MMS is thermodynamically preferred, while the negative energy difference shows that the PS is the stable configuration.

Li1.5MO3	ΔH _f , PS-Li ₆ M ₄ O ₁₂	ΔH _f , MMS-Li ₆ M ₄ O ₁₂	$(\Delta H_{f,MMS} - \Delta H_{f,PS}) \times \frac{22}{4}$
	[eV/atom]	[eV/atom]	[eV/metal]
Ti	-2.668	-2.649	0.105
V	-2.378	-2.362	0.088
Cr	-2.065	-2.057	0.044
Mn	-1.893	-1.824	0.380
Fe	-1.680	-1.597	0.457
Со	-1.489	-1.401	0.484
Ni	-1.244	-1.153	0.501
Ge	-1.941	-1.857	0.462
Zr	-2.740	-2.741	-0.005
Мо	-2.226	-2.189	0.204
Ru	-1.650	-1.532	0.649
Rh	-1.473	-1.453	0.110
Pd	-1.266	-1.140	0.693
Sn	-1.893	-1.869	0.132
Hf	-2.897	-2.877	0.110
Os	-1.663	-1.541	0.671
Ir	-1.510	-1.374	0.748
Pt	-1.370	-1.240	0.715
Pb	-1.415	-1.391	0.132

Li1.5MO3-ð	ΔHf, PS-Li6M4O11	ΔHf, MMS-Li6M4O11	$(\Delta H_{f,MMS} - \Delta H_{f,PS}) \times \frac{21}{4}$
	[eV/atom]	[eV/atom]	[eV/metal]
Ti	-2.828	-2.815	0.068
V	-2.429	-2.416	0.068
Cr	-2.095	-2.154	-0.310
Mn	-1.939	-1.887	0.273
Fe	-1.725	-1.660	0.341
Co	-1.497	-1.395	0.535
Ni	-1.278	-1.194	0.441
Ge	-2.049	-1.991	0.304
Zr	-2.913	-2.829	0.441
Mo	-2.089	-1.810	1.465
Ru	-1.556	-1.485	0.373
Rh	-1.411	-1.356	0.289
Pd	-1.240	-1.164	0.399
Sn	-2.019	-1.930	0.467
Hf	-3.047	-2.954	0.488
Os	-1.551	-1.500	0.268
Ir	-1.418	-1.347	0.373
Pt	-1.309	-1.234	0.394
Pb	-1.525	-1.467	0.304

Table S4. (cont.) Metal-migration tendency in Li_{1.5}MO₃₋₈.

MO	ΔHf, PS-M4O12	ΔHf, MMS-M4O12	$(\Delta H_{f,MMS} - \Delta H_{f,PS}) \times \frac{16}{4}$
IVIO3	[eV/atom]	[eV/atom]	[eV/metal]
Ti	-1.772	-2.113	-1.364
V	-1.644	-1.656	-0.048
Cr	-1.163	-1.246	-0.332
Mn	-0.828	-0.817	0.044
Fe	-0.569	-0.830	-1.044
Со	-0.368	-0.417	-0.196
Ni	0.040	-0.016	-0.224
Ge	-0.976	-1.097	-0.484
Zr	-2.086	-2.492	-1.624
Mo	-1.955	-2.076	-0.484
Ru	-0.936	-0.909	0.108
Rh	-0.545	-0.516	0.116
Pd	-0.345	-0.328	0.068
Sn	-0.992	-1.067	-0.300
Hf	-2.505	-2.695	-0.760
Os	-1.103	-1.077	0.104
Ir	-0.809	-0.782	0.108
Pt	-0.357	-0.347	0.040
Pb	-0.595	-0.714	-0.476

Table S4. (cont.) Metal-migration tendency in MO₃.

MO	ΔH_f , PS-M ₄ O ₁₁	ΔH_{f} , MMS-M ₄ O ₁₁	$(\Delta H_{f,MMS} - \Delta H_{f,PS}) \times \frac{15}{4}$
МО3-δ	[eV/atom]	[eV/atom]	[meV/metal]
Ti	-2.445	-2.418	0.101
V	-1.893	-1.889	0.015
Cr	-1.472	-1.436	0.135
Mn	-0.965	-0.992	-0.101
Fe	-0.713	-0.907	-0.728
Co	-0.366	-0.373	-0.026
Ni	0.045	-0.510	-2.081
Ge	-1.249	-1.244	0.019
Zr	-2.690	-2.685	0.019
Мо	-2.019	-2.030	-0.041
Ru	-0.935	-0.958	-0.086
Rh	-0.543	-0.574	-0.116
Pd	-0.313	-0.326	-0.049
Sn	-1.226	-1.235	-0.034
Hf	-2.725	-2.822	-0.364
Os	-1.043	-1.064	-0.079
Ir	-0.682	-0.774	-0.345
Pt	-0.281	-0.297	-0.060
Pb	-0.634	-0.765	-0.491

Table S4. (cont.) Metal-migration tendency in MO₃₋₈.

Li ₂ MO ₃	Pros.	Cons.	Classification
Ti	svm	ØØ	stabilizer
V	Om	sd	active cathode
Cr	Om	sd	stabilizer/active cathode
Mn	SV	dm	stabilizer
Fe	\$	sdom	stabilizer
Co	٢	dm	stabilizer/active cathode
Ni	v \$	dsom	stabilizer
Ge	Vm	S	stabilizer
Zr	V	ds	stabilizer
Мо	٢	sdm	active cathode
Ru	dom	\$	active cathode
Rh	sdom	\$	stabilizer/active cathode
Pd	som	\$	stabilizer/active cathode
Sn	SV	o m	stabilizer
Hf	S	o m	stabilizer
Os	dom	\$	active cathode
Ir	dom	\$	active cathode
Pt	sdom	\$	stabilizer/active cathode
Pb	V	dom	stabilizer

Table S5. Properties of Li₂MO₃ predicted from HT-DFT calculations.

(S) synthesizability↑ (V) high-voltage stabilizer (d) stable delithiation product (o) oxygen stability↑ (m) migration↓ \$abundant
 (S) synthesizability↓ (V) low-voltage stabilizer (d) metastable delithiation product (o) oxygen stability↓ (m) migration↑ \$cost↑

	Ti	V	Cr	Mn	Fe	Co	Ni	Ge	Zr	Мо	Ru	Rh	Pd	Sn	Hf	Os	Ir	Pt	Pb
Ti	n/a	-4.6	0.9	-2.7	11	13	5	14	-14	41	5.0	9.7	3.4	22	-5.8	13	10	2.8	36
V	-4.6	n/a	-44	5.5	-58	-45	-57	14	1.9	2.2	20	-5	15	27	9.4	18	25	13	35
Cr	0.9	-44	n/a	2.5	2.4	-0.6	2.7	5.5	7.4	-74	-47	3.2	12	20	14	-75	-32	5.7	32
Mn	-2.7	5.5	2.5	n/a	5.2	11	0.5	-0.5	6.9	-69	17	14	4.5	14	12	-8.3	11	-0.1	22
Fe	11	-58	2.4	5.2	n/a	4.5	-3.2	2.4	5.1	-134	-62	-20	21	14	12	-89	-52	-16	22
Co	13	-45	-0.6	11	4.5	n/a	-5.9	2.2	25	-154	-52	6.2	12	94	30	-80	-26	5.5	36
Ni	5	-57	2.7	0.5	-3.2	-5.9	n/a	-7.3	21	-254	-89	-24	2.9	14	25	-175	-117	-23	22
Ge	14	14	5.5	-0.5	2.4	2.2	-7.3	n/a	23	76	8.2	1.7	-12	7.7	29	31	0.9	-17	16
Zr	-14	1.9	7.4	6.9	5.1	25	21	23	n/a	48	5.3	6.5	-1.2	15	-9.4	20	3.8	-6.6	19
Mo	41	2.2	-74	-69	-134	-154	-254	76	48	n/a	-59	-49	-8.4	74	61	-24	-25	61	-72
Ru	5.0	20	-47	17	-62	-52	-89	8.2	5.3	-59	n/a	-25	13	17	18	3.2	-3.4	22	-10
Rh	9.7	-5	3.2	14	-20	6.2	-24	1.7	6.5	-49	-25	n/a	12	11	14	-40	-13	9.3	0.5
Pd	3.4	15	12	4.5	21	12	2.9	-12	-1.2	-8.4	13	12	n/a	-5.3	6.2	6.0	5.1	-5.2	-10
Sn	22	27	20	14	14	94	14	7.7	15	74	17	11	-5.3	n/a	23	40	9.4	-13	0.4
Hf	-5.8	9.4	14	12	12	30	25	29	-9.4	61	18	14	6.2	23	n/a	38	16	2.1	29
Os	13	18	-75	-8.3	-89	-80	-175	31	20	-24	3.2	-40	6.0	40	38	n/a	1	51	-33
Ir	10	25	-32	11	-52	-26	-117	0.9	3.8	-25	-3.4	-13	5.1	9.4	16	1	n/a	17	-19
Pt	2.8	13	5.7	-0.1	-16	5.5	-23	-17	-6.6	61	22	9.3	-5.2	-13	2.1	51	17	n/a	-25
Pb	36	35	32	22	22	36	22	16	19	-72	-10	0.5	-10	0.4	29	-33	-19	-25	n/a
	I																		

Table S6. Mixing energies in Li₄M_IM_{II}O₆ compounds [meV/site][†].

[†] An ordered Li₄M_IM_{II}O₆ compound can be formed when the calculated DFT mixing energy is found to be very negative. There is a previous study that high capacity can be achieved in disordered structure.¹⁹ However, there have not been sufficient studies at the present time to exclude all ordered compounds to be used in LIB applications. Predicting the electrochemical performance for all of the compounds listed in Table S6 is beyond the scope of current study.

II-VI compounds	Li_4DyOsO_6 (3-5)
Li ₄ CoTeO ₆ (2-6, 4-4)	Li ₄ ErOsO ₆ (3-5)
Li ₄ MnTeO ₆ (2-6, 4-4)	Li ₄ FeSbO ₆ (3-5)
Li ₄ NiTeO ₆ (2-6, 4-4)	$Li_4GaOsO_6(3-5)$
Li ₄ ZnTeO ₆ (2-6)	Li_4GaRuO_6 (3-5)
	Li ₄ GaIrO ₆ (3-5)
III-V compounds	Li ₄ GdOsO ₆ (3-5)
Li ₄ AlIrO ₆ (3-5)	Li ₄ HoOsO ₆ (3-5)
Li ₄ AlOsO ₆ (3-5)	Li ₄ InBiO ₆ (3-5)
Li ₄ AlPtO ₆ (3-5)	Li ₄ InOsO ₆ (3-5)
Li ₄ AlRhO ₆ (3-5)	Li ₄ InSbO ₆ (3-5)
Li_4AlRuO_6 (3-5)	Li ₄ MnSbO ₆ (3-5)
Li ₄ AlSbO ₆ (3-5)	Li ₄ NiSbO ₆ (3-5)
Li ₄ CoBiO ₆ (3-5)	Li ₄ SbRhO ₆ (3-5)
Li ₄ CoSbO ₆ (3-5)	Li ₄ ScOsO ₆ (3-5)
Li ₄ CrBiO ₆ (3-5)	Li ₄ TbOsO ₆ (3-5)
Li ₄ CrSbO ₆ (3-5)	$Li_4TlOsO_6(3-5)$
Li ₄ CuOsO ₆ (3-5)	$Li_4YOsO_6(3-5)$

Table S7. Stable II-VI and III-V Li₄M_IM_{II}O₆ compounds (and possible oxidation states)

II-VI compounds	Li_4GaRhO_6 (3-5)
Li ₄ FeTeO ₆ (2-6, 4-4)	Li ₄ GaSbO ₆ (3-5)
Li ₄ NiWO ₆ (2-6)	Li ₄ MnTaO ₆ (3-5)
	Li ₄ NiBiO ₆ (3-5)
III-V compounds	Li ₄ NiTaO ₆ (3-5)
Li ₄ AlBiO ₆ (3-5)	Li ₄ ScBiO ₆ (3-5)
Li ₄ BiOsO ₆ (3-5)	Li ₄ ScNbO ₆ (3-5)
Li ₄ CeOsO ₆ (3-5)	Li ₄ ScSbO ₆ (3-5)
Li ₄ CoNbO ₆ (3-5)	Li ₄ ScTaO ₆ (3-5)
Li ₄ CoTaO ₆ (3-5)	$Li_4SmOsO_6(3-5)$
Li ₄ CrNbO ₆ (3-5)	Li ₄ TaRhO ₆ (3-5)
Li ₄ CrTaO ₆ (3-5)	Li ₄ TlBiO ₆ (3-5)
Li ₄ FeNbO ₆ (3-5)	Li ₄ TlSbO ₆ (3-5)
Li ₄ FeTaO ₆ (3-5)	Li ₄ VNbO ₆ (3-5)
Li ₄ GaBiO ₆ (3-5)	Li_4VSbO_6 (3-5)
Li ₄ GaPtO ₆ (3-5)	Li ₄ VTaO ₆ (3-5)

Table S8. Nearly Stable II-VI and III-V Li₄M_IM_{II}O₆ compounds (oxidation states)

Table S9. Calculated lattice parameters for Li₂MO₃ compounds using HT-DFT: We used Li₄M₂O₆ primitive cells to calculate the lattice parameters in C2/m monoclinic crystal structures. Then, we converted these values to the hexagonal $R\overline{3}m$ structure, where the lattice parameter a indicates the distance between two adjacent lithium atom and the lattice parameter c is the interlayer spacing in the z-direction (see the schematic below Table S9). We have provided $R\overline{3}m$ c/a ratio in Table S9, which is a direct measure of layered characteristic for the cathode materials (also, see Fig. S4).

Chemical compound		<i>C2/</i>	<i>m</i> crysta	Ref	Refined to $R\overline{3}m$				
	a [Å]	<i>b</i> [Å]	<i>c</i> [Å]	α [°]	β [°]	γ [°]	<i>a</i> [Å]	<i>c</i> [Å]	c/a
Li ₂ TiO ₃	5.064	8.748	5.074	90.0	109.7	90.0	2.916	14.327	4.913
Li ₂ VO ₃	4.952	8.772	4.997	90.0	108.4	90.0	2.924	14.222	4.864
Li ₂ CrO ₃	5.007	8.524	5.019	90.0	110.2	90.0	2.841	14.134	4.975
Li ₂ MnO ₃	4.933	8.532	4.994	90.0	109.5	90.0	2.844	14.120	4.965
Li ₂ FeO ₃	4.917	8.689	4.981	90.0	108.5	90.0	2.896	14.173	4.894
Li ₂ CoO ₃	4.906	8.616	4.954	90.0	108.7	90.0	2.872	14.077	4.901
Li ₂ NiO ₃	4.825	8.350	4.919	90.0	109.1	90.0	2.783	13.943	5.010
Li ₂ GeO ₃	4.969	8.597	5.054	90.0	109.4	90.0	2.866	14.298	4.989
Li ₂ ZrO ₃	5.392	9.293	5.226	90.0	110.3	90.0	3.098	14.704	4.747
Li ₂ MoO ₃	5.132	8.511	5.199	90.0	108.5	90.0	2.837	14.789	5.213
Li ₂ RuO ₃	5.035	8.702	5.116	90.0	109.2	90.0	2.901	14.494	4.997
Li ₂ RhO ₃	5.075	8.766	5.079	90.0	109.7	90.0	2.922	14.349	4.911
Li_2PdO_3	5.118	8.841	5.080	90.0	109.8	90.0	2.947	14.338	4.865
Li_2SnO_3	5.319	9.184	5.229	90.0	110.1	90.0	3.061	14.733	4.813
Li ₂ HfO ₃	5.337	9.200	5.203	90.0	110.3	90.0	3.067	14.644	4.775
Li ₂ OsO ₃	5.177	8.436	5.159	90.0	109.4	90.0	2.812	14.600	5.192
Li ₂ IrO ₃	5.100	8.795	5.104	90.0	109.7	90.0	2.932	14.420	4.919
Li ₂ PtO ₃	5.178	8.934	5.046	90.0	110.2	90.0	2.978	14.204	4.770
Li ₂ PbO ₃	5.474	9.473	5.302	90.0	110.1	90.0	3.158	14.937	4.730

Figure S4. Lattice parameters of Li₂MO₃ compounds: The *C2/m* monoclinic Li₂MO₃ lattice parameters have been converted to the hexagonal $R\bar{3}m$ structure, and the lattice parameters *a* and *c* are provided. The *c/a* ratios are also provided. Comparing the $R\bar{3}m$ LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ and LiCoO₂ cathode materials with Li₂MnO₃, there are ~1% differences in the lattice parameters.^{75,76} Between the Li₂RuO₃ and Li₂SnO₃ compounds in Fig. S4, there is 0.161 Å difference in the lattice parameter *a* and 0.239 Å difference in the lattice parameter *c*. Overall, we find that the lattice mismatch in the lattice parameters *a* is quite small (< 0.4 Å), while the differences of the lattice parameters *c* can be up to ~1 Å. We believe that it would not be beneficial not to have a large mismatch in *z*-direction. For instance, we do not recommend incorporating Li₂NiO₃ with Li₂MoO₃, Li₂SnO₃, or Li₂PbO₃. In addition, the most of the Li₂MO₃ compounds shown in Fig. S4 have the lattice parameter *c* less than 14.6 Å, which could be experimentally tested with the common $R\bar{3}m$ cathode compounds that the typical lattice distance in *z*-direction varies between 14.0 to 14.3 Å.^{75,76} Lastly, the *c/a* ratio for typical $R\bar{3}m$ layered compounds is approximately ~5,^{75,76} which the most of new Li₂MO₃ may match this criteria.

M in Li ₂ MO ₃	active/active Li2MO3 cathode pairs	
Cr	Co, Ru, Rh, Pt	
Со	Cr, Rh	
Ru	Cr, Rh, Pd, Os, Ir, Pt	
Rh	Cr, Co, Ru, Pd, Os, Ir, Pt	
Pd	Ru, Rh, Pt	
Os	Ru, Rh, Ir	
Ir	Ru, Rh, Os, Pt	
Pt	Cr, Ru, Rh, Pd, Ir	

Table S10. Suggested active/active cathode pairs†.

†The ordered Li₄M₁M₁₁O₆ compounds are marked with a purple-colored font.

	Li ₂ MO ₃ pairing (<i>utilized as</i>)		
	active/inactive	inactive/active	
Ti	n/a	Cr, Co, Ru, Rh, Pd, Os, Ir, Pt	
V	Hf	n/a	
Cr	Ti, Mn, Ge	Ru, Rh, Pd, Os, Ir, Pt	
Mn	n/a	Cr, Co, Ru, Rh, Pd, Os, Ir, Pt	
Fe	n/a	Ru, Rh, Os, Ir, Pt	
Со	Ti, Mn, Ni, Ge	Ru, Rh, Pd, Ir	
Ni	n/a	Co, Rh, Pd, Ir, Pt	
Ge	n/a	Cr, Co, Ru, Rh, Pd, Ir, Pt	
Zr	n/a	Pd, Ir	
Ru	Ti, Cr, Mn, Fe, Co, Ge, Rh, Pd, Sn, Hf, Pt, Pb	n/a	
Rh	Ti, Cr, Mn, Fe, Co, Ni, Ge, Pd, Sn, Hf	Ru, Os, Ir	
Pd	Ti, Cr, Mn, Co, Ni, Ge, Zr, Sn, Hf	Ru, Rh, Os, Ir	
Sn	n/a	Ru, Rh, Pd, Ir	
Hf	n/a	V, Ru, Rh, Pd, Ir, Pt	
Os	Ti, Cr, Mn, Fe, Rh, Pd, Pb	n/a	
Ir	Ti, Cr, Mn, Fe, Co, Ni, Ge, Zr, Rh, Pd, Sn, Hf, Pt, Pb	n/a	
Pt	Ti, Cr, Mn, Fe, Ni, Ge, Hf	Ru, Ir	
Pb	n/a	Ru, Os, Ir	

 Table S11. Suggested active-inactive cathode pairs†.

[†]The ordered $Li_4M_IM_{II}O_6$ compounds are marked with a purple-colored font. After screening, we find that there is no inactive Li_2MO_3 stabilizer that can match with Li_2MoO_3 active cathode (*i.e.*, they decompose to other stable phase mixtures).

S1. Methodology

We use density functional theory (DFT) as implemented in the Vienna Ab-initio Simulation Package (VASP)^{37,38} for all the first-principles calculations reported in this work. We use projector-augmented wave (PAW)³⁹ potentials to model the ion-electron interactions, and the PBE parameterization of a generalized gradient approximation⁴¹ to the exchange-correlation energy functional. We use a constant plane-wave cutoff energy of 520 eV, and a dense Γ centered k-mesh corresponding to ~8,000 k-points per reciprocal atom (KPPRA) in the Brillouin zone to calculate total energies. We relax all structures fully with respect to cell volume and atomic positions until forces on all atoms are within a few meV/Å and stresses are within a few kbar. Any species with an unfilled *d*-orbital (*f*-orbital) is given an initial magnetic moment of 5µ_B (7µ_B) in a ferromagnetic configuration, and allowed to electronically relax to self-consistency. For compounds containing certain *d*- and *f*-block elements, we perform GGA+*U* calculations using the Dudarev approach,⁴² and the corresponding *U-J* values are listed in Table S12.

We test the convergence of properties such as ΔE_0^{vac} , ΔE_{TM}^{mig} , and ΔE^{mix} with supercell size, by calculating them using supercells up to 32 formula units (*f.u.*). Our calculations indicate that for Li₂MnO₃, ΔE_0^{vac} calculated using 2 × 1 × 1 supercell (with four *f.u.*) is within 5 meV/vacancy when compared to that calculated with a Li₆₄Mn₃₂O₉₆ supercell (with defects separated by ~10.2 Å). Similar tests on 'MMS'-MoO₃ as a function of supercell sizes find that ΔE_{TM}^{mig} is converged within 10 meV/Mo site. Lastly, we tested several metal orderings in a 2 × 1 × 1 Li₂Ru_{0.5}M_{0.5}O₃ supercell (M = Ni, Ir, Ti, or Mn). We find that all of the lowest energy mixing configurations to have the ΔE^{mix} values that are consistent with the settings used for our high-throughput calculations.

S2. Additional notes on Li₂CoO₃ and Li₂CrO₃

• We have found the following papers mentioning "Li₂CoO₃"; however, they are typos in place of either LiCoO₂ (*i.e.*, one of the most common cathode materials) or Li₂CO₃ (*i.e.*, one of the most commonly used Li-containing precursors).

1) LiCoO₂

- Prachařová et al., J. Power Sources, 2002, 108, 204.
- Kozen et al., Chem. Mater., 2015, 27, 5324.
- Guo et al., Waste Management, 2016, 51, 227.
- Ponce et al., J. Phys. Chem. C, 2017, 121, 12959.
- Liang et al., J. Power Sources, 2017, 342, 836.

2) Li₂CO₃

- Kim et al., Mater. Res. Bull., 1999, 34, 571.
- Gendron et al., Solid State Ionics, 2003, 157, 125.
- Majumder et al., J. Power Sources, 2006, 154, 262.
- Fleutot et al., J. Power Sources, 2008, 180, 836.
- Luo et al., Nat. Chem., 2010, 2, 760.
- Einarsrud et al., Chem. Soc. Rev., 2014, 43, 2187.
- Khatun et al., J. Scientific Research, 2014, 6, 217.
- Sarker et al., Mater. Res., 2016, 19, 505.
- Lu et al., RSC Adv., 2017, 7, 4269.

• Additionally, we note that the Materials $Project^{35}$ contains two hypothetical Li₂CoO₃ structures (*i.e.*, *Pnnm* and *P4₂/mnm*) that are thermodynamically unstable with a convex hull distance of >90 meV/atom. We have also tested the hypothetical *C2/m* Li₇Co₅O₁₂ phase from the Materials Project.³⁵ We find that Li₇Co₅O₁₂ lies just above the convex hull (by ~2 meV/atom) with respect to other stable compounds present in Li-Co-O chemical space within the OQMD,^{33,34} and thus does not affect the calculated stability of the *C2/m* Li₂CoO₃.

• To the best of our knowledge, there is only one mention of Li₂CrO₃ in the literature but there is no description of the compound at all; see Patil Shrinivas *et al.*, *International Journal of Current Trends in Engineering & Research*, 2016, **2**, 108.

• The Materials Project³⁵ contains eight hypothetical structures for Li₂CrO₃. The two lowest energy Li₂CrO₃ structures belong to the space group of C2/c and C2/m (with the hull distance of 6 and 19 meV/atom, respectively), consistent with our results, and suggesting that a Li-rich Li₂CrO₃ compound is likely to be stable yet to be experimentally synthesized.

S3. Properties of the top-30 active/inactive pair candidates in Table 1

• We define the gravimetric *"Energy density"* in Table 1 as the product of *"Average voltage"* of the composite redox window and *"Composite capacity"* of the Li₂M₁O₃-Li₂M₁₁O₃.

• The lower bound of composite "*Redox window*" in Table 1 corresponds to the lowest delithiation voltage of active Li₂M_IO₃ component (Fig. 2); and the upper bound corresponds to an activation voltage of inactive Li₂M_{II}O₃ (*i.e.*, lowest delithiation voltage of inactive Li₂M_{II}O₃ component).

• The "*Composite capacity*" in Table 1 is calculated by utilizing an accessible capacity from active Li₂M₁O₃ in Li₂M₁O₃-Li₂M₁O₃ composite (*i.e.*, within the "*Redox window*" shown in Table 1); in other words, we do not consider delithiating inactive Li₂M₁O₃ counterparts to calculate the final gravimetric energy density. In reality, the "*Composite capacity*" (and "*Energy density*") can increase upon activating its inactive Li₂M₁O₃ component, and also by tuning the active/inactive Li₂M₁(II)O₃ mole ratios in the composite (here, we consider 1:1 active/inactive mole ratio in Table 1).

• The relative "*Stability within OQMD*" (*i.e.*, convex-hull distance) in the Li-M_I-M_{II}-O phase diagram within the OQMD framework^{33,34} is provided. All of the top-30 active/inactive pair cathode candidates are either on the convex-hull (*i.e.*, stable) or near the convex-hull (*i.e.*, nearly stable, ~25 meV/atom). It is expected that these predicted thermodynamically stable/nearly-stable compounds can be synthesized experimentally, as the currently known Li4RuMO₆ (M = Ti, Mn, Sn) systems¹⁴⁻¹⁸ have the convex-hull distance of 5, 17, and 17 meV/atom, respectively, in Table 1. For further discussions on "stability", please refer to Table S1, methods section, and/or *Refs.* 33 – 34.

Li ₂ MO ₃ (M = chemical element)	U value for M [eV]
Ti	n/a
V	3.1
Cr	3.5
Mn	3.8
Fe	4.0
Со	3.3
Ni	6.4
Ge	n/a
Zr	n/a
Мо	n/a
Ru	n/a
Rh	n/a
Pd	n/a
Sn	n/a
Hf	n/a
Os	n/a
Ir	n/a
Pt	n/a
Рb	n/a

Table S12. U values adapted from Refs. 33, 34