Supporting Information (SI)

Highly selective gas separation membrane using in-situ amorphised

metal-organic frameworks

Aylin Kertik,^a Lik H. Wee^{*a}, Martin Pfannmöller,^b Sara Bals,^b Johan A. Martens^a and Ivo F.J.

Vankelecom*a

^aCentre for Surface Chemistry and Catalysis, University of Leuven, Celestijnenlaan 200f, B3001, Heverlee, Leuven, Belgium. E-mail: likhong.wee@kuleuven.be; ivo.vankelecom@kuleuven.be

^bElectron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, B2020, Antwerp, Belgium.

Fig. S1 CO₂ adsorption isotherm of ZIF-8 at 35 °C. Experimental data is taken from Ref. [1].

Fig. S2 The solubility of pure Matrimid[®] membranes after annealing at (a) 250 °C and (b) 350 °C. The latter is indicated by the red arrow.

Fig. S3 The proposed thermo-oxidative cross-linking mechanism for Matrimid[®].

Fig. S4 The proposed cross-linking mechanism of the MOF in the MMM. It should be noted that this mechanism is shown separately for clarity. In the MMMs, this mechanism and the polymer cross-linking occur simultaneously.

Fig. S5 The TGA plot (solid lines) and derivatives (dotted lines) of the Matrimid[®] membranes.

Fig. S6 The TGA plot (solid lines) and derivatives (dotted lines) for MMMs with 40 wt.% ZIF-8 loading.

Sample	Tensile strength (MPa)
Matrimid [®] treated at 100 °C (M100)	85.3
Matrimid [®] treated at 160 °C (M160)	101.8
Matrimid [®] treated at 250 °C (M250)	118.6
Matrimid [®] treated at 350 °C (M350)	135.2
MMM with 40% ZIF-8, treated at 100 °C (Z8-40-100)	6.3
MMM with 40% ZIF-8, treated at 160 °C (Z8-40-160)	5.2
MMM with 40% ZIF-8, treated at 250 °C (Z8-40-250)	12.0
MMM with 40% ZIF-8, treated at 350 °C (Z8-40-350)	33.8

 Table S1
 The tensile strength of Matrimid[®] and MMMs with 40% ZIF-8.

Fig. S7 The dependency of the membrane tensile strength on the heat treatment temperature.

Fig. S8 The ATR-FTIR patterns of the (a) Matrimid[®] and (b) MMMs with 40 wt.% ZIF-8 loading as a function of temperature.

Fig. S9 The XPS patterns of MMMs with ZIF-8 (40 wt.%) treated at (a) 100 °C and (b) 350 °C

Fig. S10 The XRD plots of (a) Matrimid[®] and MMMs with (b) 20 wt.% and (c) 30 wt.% ZIF-8. MMMs with (d) 20 wt.%, (e) 30 wt.%, (f) 40 wt.% ZIF-7 loading are also given.

Fig. S11 The XRD pattern of ZIF-8 powder subjected to thermal treatment at 350 $^\circ$ C.

Fig. S12 XRD patterns of amorphous ZIF-8 obtained by ball-milling and as-synthesized ZIF-8.

Fig. S13 SEM images of (a) as-synthesized ZIF-8 and (b) amorphous ZIF-8 obtained by ballmilling.

Fig. S14 N_2 adsorption-desorption isotherms of (a) as-synthesized ZIF-8 and (b) amorphous ZIF-8 prepared by ball-milling.

Table S2 Physicochemical properties of as-synthesized ZIF-8 and amorphous ZIF-8 prepared by ball-milling.

Samples	BET surface area (cm²/g)	Micropore volume obtained from <i>t</i> -plot (cm²/g)	Total pore volume (cm³/g)	
ZIF-8	1877	0.66	1.33	
Amorphous ZIF-8	16	-	0.09	

Fig. S15 ATR-FTIR spectrum of MMM prepared from amorphous ZIF-8 prepared via ball-milling. The inset shows the enlarged region from range 2000-1000 cm⁻¹ indicating the peak at 1600 cm⁻¹ is assigned to C=O stretching vibration attributed from polymer-polymer crosslinking.

Fig. S16 (a,b) Top view and (c,d) cross-sectional SEM images of MMM filled with amorphous ZIF-8 prepared by ball-milling (30 wt.%) viewed at different magnifications.

Fig. S17 The solubility of MMMs with ZIF-7, after annealing at 160 °C, 250 °C, and 350 °C. Similar to ZIF-8, the MMMs with ZIF-7 were effectively cross-linked by the treatment at 250 °C and 350 °C and the presence of the MOF.

Fig. S18 The gas separation performance of the MMMs with ZIF-7.

Polymer	MOF	Loading, wt.%	Treatment	Measurement conditions ^[2]	CO ₂ permeability, Barrer ^[3]	CO ₂ /CH ₄ selectivity	Ref.
Matrimid® n		0	100 °C, 24 h, in air		5.6±0.7	22.3±0.2	This work
			160 °C, 24 h, in air	10 bar, 35 °C,	8.2±0.2	31.6±1	This work
			250 °C, 24 h, in air	50 vol% CO ₂ /50 vol% CH ₄	5.3±0.2	40.4± 3.5	This work
	none		350 °C, 24 h, in air		7.4±0.7	76.3±0.8	This work
				40 bar, 35 °C,	2.6±0.02	90.8±4.2	This work
				50 vol% CO ₂ /50 vol% CH ₄			
Matrimid®	Amorphous ZIF- 8 (ball-milling)	30	350 °C, 24 h, in air	10 bar, 35 °C,	47.9±0.48	0.83±0.001	This work
Mathinu		50		50 vol% CO2/50 vol% CH4			
			100 °C, 24 h, in air		19.3±3.6	22.4±3.2	This work
		20	160 °C, 24 h, in air	10 bar, 35 °C,	20.8±6	44.3±4.5	This work
		20	250 °C, 24 h, in air	50 vol% CO ₂ /50 vol% CH ₄	4.5±0.5	60.0±3.4	This work
			350 °C, 24 h, in air		2.8±0.1	91.3±11.7	This work
			100 °C, 24 h, in air		19.6±4.9	18.6±4	This work
		30	160 °C, 24 h, in air	10 bar, 35 °C,	46.2±9.6	24.3±2	This work
Matrimid [®] ZIF-8			250 °C, 24 h, in air	50 vol% CO ₂ /50 vol% CH ₄	3.4±0.2	111.4±18.1	This work
	ZIE-8		350 °C, 24 h, in air		4.5±0.6	162.0±6.6	This work
	0	40	100 °C, 24 h, in air	10 bar, 35 °C,	6.5±0.4	18.4±2.4	This work
			160 °C, 24 h, in air		56.6±4.7	20.0±1.8	This work
			250 °C, 24 h, in air		11.8±1.3	52.6±1.9	This work
				50 vol% CO₂/50 vol% CH₄	4.9±1.2	91.5±12	This work
			350 °C, 24 h, in air				
				40 bar, 35 °C,	1.9+0.01	134+7.6	This work
				50 VOI% CO ₂ /50 VOI% CH ₄			
			100 °C, 24 h, in air		6.1±1.4	25.4±1.4	This work
		20	160 °C, 24 h, in air	10 bar, 35 °C,	6.1±0.7	32.8±3.9	This work
		20	250 °C, 24 h, in air	50 vol% CO ₂ /50 vol% CH ₄	5.4±0.5	56.1±1	This work
		350 °C, 24 h, in air		5.4±1.1	112.0±8.4	This work	
		30	100 °C, 24 h, in air		6.1±0.4	26.8±3.4	This work
			160 °C, 24 h, in air	10 bar, 35 °C,	5.4±3.5	40.6±1.4	This work
Matrimid [®] Z	ZIF-7		250 °C, 24 h, in air	50 vol% CO ₂ /50 vol% CH ₄	5.0±1.2	91.5±12	This work
			350 °C, 24 h, in air		5.1±0.8	147.2±11.4	This work

 Table S3 The gas separation data of MMMs^[1] and polymeric membranes from this work and literature.

			100 °C 24 h in air		5 7+1 5	24 5+8	This work
		40	100 C, 24 H, III all	10 bar, 35 °C, 50 vol% CO₂/50 vol% CH₄	11 0 1 2	24.J±0	
			160 C, 24 H, III dir		11.8±1.3	52.0±1.9	
			250 °C, 24 n, in air		7.8±2	114.4±9.6	
					4.5±1.7	155.8±11.5	This work
			350 °C, 24 h, in air	40 bar, 35 °C,	1.9±0.05	140±11.5	This work
				50 vol% CO ₂ /50 vol% CH ₄			
Matrimid®	ZIF-8	20	180 °C, 18 h, in vacuo	4 bar, 22 °C	12.96	41.5	2
Matrimid®	ZIF-8	50 ^[4]	240 °C, overnight,	2 bar, 35 °C, 10 mol% CO ₂ /90	[5]	89.15	3
			190 °C 12 h in	7 E bar 2E °C aquimalar	2 70	00 0	1
Matrimid®	(uspechest)	8.2	180 C, 12 N, III	7.5 bar, 25°C, equimolar	2.78	88.2	4
	(nanosneet)			10 hor 25 % or vincelar	147	22 5	-
Matrimid®	Ni ₂ (dodbc)	23	120°C, 24 h, m vacuo	CO_2/CH_4	14.7	32.5	5
Matrimid®	MIL-53	15	80 °C, 24 h, 150°C,	3 bar, 35 °C	12.43	51.8	6
					476		-
Matrimid®	Cu-BTC	30	90 °C, 24 n	4 bar, 35 °C, 35 vol% $CO_2/65$ vol% CH_4	170	23	/
Matrimid®	MOF-5	10	240 °C, 24 h, in	2 atm, 35 °C	11.10	51	8
				2 har 0.% any implant CO. (CU	107	2.0	0
Matrimid [®]	MIL-53(AI)-NH ₂	25	180°C, 10 h, m vacuo	$3 \text{ bar, } 0^{-1}\text{C}, \text{ equimolar CO}_2/CH_4$	107	3.9	9
Ultem	Cu-BTC	35	in vacuo	3.5 bar, 35 °C	4.1	34	10
PEI	Cubic-MOF-5	25	70 °C, 2 d, in vacuo	6 bar, 25 °C	5.39	23.43	11
PSf	MIL-53(AI)-NH ₂	25	180 °C, 10 h, in vacuo	3 bar, 35 °C, equimolar CO_2/CH_4	5.5	27.5	9
PSf	MIL-68(AI)	8	120 °C, 24 h, in vacuo	2 bar, 35 °C, equimolar CO ₂ /CH ₄	5.7	36.5	12
PMP	MIL-53(AI)-NH ₂	30	50 °C, 12 h, in	30 °C	358.2	24.4	13
ODPA-TMPDA	Cu-BTC	40	200 °C, 24 h, <i>in</i>	2 atm, 35 °C	260.7	27.75	10
6FDA-ODA	UiO-66	25	230 °C, 15 h, in vacuo	10 bar, 35 °C	50.4	46.1	14
Pebax	ZIF-7	34	Room temperature, 24 h	3.75 bar (CO ₂), 7.5 bar (CH ₄), 20 °C	41	44	15
	ZIF-8 (hollow		50 °C, 4 h, <i>in</i>	1 bar, 35 °C	623	11.2	16
		- 20		1 1	1	1	1

	sphere)		<i>vacuo,</i> 24 h				
Poly(vinylidene fluoride)	Cu-BTC	10	120 °C, 24 h, in vacuo	5 bar, 25 °C	2.002	41.7	17
Poly(phenylene oxide)	Cu-BTC	40	200 °C, 24 h, in vacuo	30 °C	115	34	18
Ultem	none	0	120 °C, 24 h, in vacuo	3.5 bar, 35 °C	1.48	37	19
Poly(methyl methacrylate)	none	0	>Tg	5 atm, 35 °C	0.35	60	20
Matrimid®	none	0	130 °C, overnight, in vacuo	1 atm, 35 °C	8.7	36.3	21
Poly(ether sulfone)	none	0	Compression molding, 300°C	10 atm, 35 °C	2.8	28	22
PEEK	none	0	Tg+5 °C	10 atm, 35 °C	0.963	31	23
Brominated Matrimid [®] 5218 Pl	none	0	250 °C, 48 h, in vacuo	10 atm, 35 °C	13.3	30.2	24
Cellulose acetate	none	0	150 °C, 48 h, in vacuo	10 atm, 35 °C	3.04	38	25
Poly(vinylidene fluoride)	none	0	120 °C, 24 h, in vacuo	5 bar, 25 °C	0.915	21.27	17
Poly(vinyl chloride)	none	0	Room temperature, 2 h, <i>in vacuo</i>	1 bar, 25 °C	0.54	22.5	26
PDMS	none	0	75 °C, 45 min, 25°C, 3 d	4 bar, 35 °C	3970	4	27
Polysulfone	none	0	Tg+10 °C, 2 d, in vacuo	10 atm, 35 °C	5.6	22	28
Polycarbonate	none	0	Tg+10 °C, several days, in vacuo	10 atm, 35 °C	6.8	18.9	29
Polystyrene	none	0	85 °C, 24 h	4.4 atm, 23 °C	14.1	18.1	30
РРО	none	0	[6]	1 atm, 35 °C	82	12.8	31
Ethyl cellulose	none	0	25 °C, 20 h, 60% relative humidity	2 bar, 25 °C	67.7	11.1	32
Torlon	none	0	250 °C, overnight, <i>in vacuo</i>	10 atm, 35 °C	0.83	27.8	33

^[1] For each reference, the best performance was listed

^[2] If a gas mixture composition is not listed, the data represents pure gas measurements

^[3] 1 Barrer = $[10^{-10} \text{ cm}^3 \text{ (STP) cm/(cm}^2 \text{ s cmHg)}]$

^[4] Loading calculated as (wt. MOF)/(wt. polymer)

^[5] Not reported

^[6] Rate of permeation is reported as GPU, 1 GPU = $[10^{-6} \text{cm}^3(\text{STP})/(\text{cm}^2 \text{ s cmHg})] = [3.35 \times 10^{-10} \text{ mol}/(\text{m}^2 \text{ s Pa})]$

References

- 1. Zhang, Z. et al. AIChE 59, 2195–2206 (2013).
- 2. Song, Q. *et al.* Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. *Energy Environ. Sci.* **5**, 8359–8369 (2012).
- 3. Ordoñez, M. J. C., Balkus Jr., K. J., Ferraris, J. P. & Musselman, I. H. Molecular sieving realized with ZIF-8/Matrimid[®] mixed-matrix membranes. *J. Membr. Sci.* **361**, 28–37 (2010).
- 4. Rodenas, T. *et al.* Metal-organic framework nanosheets in polymer composite materials for gas separation. *Nat. Mater.* **14**, 48–55 (2015).
- 5. Bachman, J. E. & Long, J. R. Plasticization-resistant Ni₂(dobdc)/polyimide composite membranes for the removal of CO₂ from natural gas. *Energy Environ. Sci.* **9**, 2031–2036 (2016).
- 6. Dorosti, F., Omidkhah, M. & Abedini, R. Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO₂/CH₄ separation. *Chem. Eng. Res. Des.* **92**, 2439–2448 (2014).
- Basu, S., Cano-Odena, A. & Vankelecom, I. F. J. Asymmetric membrane based on Matrimid and polysulphone blends for enhanced permeance and stability in binary gas (CO₂/CH₄) mixture separations. *Sep. Purif. Technol.* **75**, 15–21 (2010).
- 8. Perez, E. V., Balkus Jr., K. J., Ferraris, J. P. & Musselman, I. H. Mixed-matrix membranes containing MOF-5 for gas separations. *J. Membr. Sci.* **328**, 165–173 (2009).
- 9. Rodenas, T., van Dalen, M., Serra-Crespo, P., Kapteijn, F. & Gascon, J. Mixed matrix membranes based on NH₂-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO₂/CH₄ separation performance. *Microporous Mesoporous Mater.* **192**, 35–42 (2014).
- 10. Duan, C., Jie, X., Liu, D., Cao, Y. & Yuan, Q. Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks. *J. Membr. Sci.* **466**, 92–102 (2014).
- 11. Arjmandi, M. & Pakizeh, M. Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment. *J. Ind. Eng. Chem.* **20**, 3857–3868 (2014).
- 12. Seoane, B., Sebastián, V., Téllez, C. & Coronas, J. Crystallization in THF: the possibility of one-pot synthesis of mixed matrix membranes containing MOF MIL-68(AI). *CrystEngComm* **68**, 1–5 (2013).
- 13. Abedini, R., Omidkhah, M. & Dorosti, F. Highly permeable poly(4-methyl-1-pentyne)/NH₂ -MIL-53(Al) mixed matrix membrane for CO₂/CH₄ separation. *RSC Adv.* **4**, 36522 (2014).
- 14. Nik, O. G., Chen, X. Y. & Kaliaguine, S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO 2 / CH 4 separation. *J. Membr. Sci.* **414**, 48–61 (2012).
- 15. Li, T., Pan, Y., Peinemann, K.-V. & Lai, Z. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. *J. Membr. Sci.* **425-426**, 235–242 (2013).
- 16. Hwang, S. *et al.* Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO₂/CH₄ gas separation. *J. Membr. Sci.* **480**, 11–19 (2015).
- Feijani, E. A., Mahdavi, H. & Tavasoli, A. Poly(vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications. *Chem. Eng. Res. Des.* 96, 87–102 (2015).
- 18. Ge, L., Zhou, W., Rudolph, V. & Zhu, Z. Mixed matrix membranes incorporated with size-reduced Cu-BTC

for improved gas separation. J. Mater. Chem. A 1, 6350 (2013).

- 19. Hao, L., Li, P. & Chung, T.-S. PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide. *J. Membr. Sci.* **453**, 614–623 (2014).
- Raymond, P. C., Koros, W. J. & Paul, D. R. Comparison of mixed and pure gas permeation characteristics for CO₂ and CH₄ in copolymers and blends containing methyl methacrylate units. *J. Membr. Sci.* 77, 49–57 (1993).
- 21. Guiver, M. D. *et al.* Structural characterization and gas-transport properties of brominated Matrimid polyimide. *J. Polym. Sci. Part A Polym. Chem.* **40**, 4193–4204 (2002).
- 22. Chiou, J. S., Maeda, Y. & Paul, D. R. Gas permeation in polyethersulfone. *J. Appl. Polym. Sci.* **33**, 1823–1828 (1987).
- 23. Handa, Y. P., Roovers, J. & Moulini, P. Gas transport properties of substituted PEEKs. *J. Polym. Sci. Part B Polym. Phys.* **35**, 2355–2362 (1997).
- 24. Xiao, Y., Dai, Y., Chung, T.-S. & and Michael D. Guiver. Effects of brominating matrimid polyimide on the physical and gas transport properties of derived carbon membranes. *Macromolecules* **38**, 10042–10049 (2005).
- 25. Li, J., Nagai, K., Nakagawa, T. & Wang, S. Preparation of polyethyleneglycol (PEG) and cellulose acetate (CA) blend membranes and their gas permeabilities. *J. Appl. Polym. Sci.* **58**, 1455–1463 (1995).
- 26. Tiemblo, P., J. Guzmán, E. Riande, C. Mijangos & and H. Reinecke. The gas transport properties of PVC functionalized with mercapto pyridine groups. *Macromolecules* **35**, 420–424 (2002).
- 27. Berean, K. *et al.* The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary CO₂ and CH₄ gas permeation. *Sep. Purif. Technol.* **122**, 96–104 (2014).
- 28. McHattie, J. S., Koros, W. J. & Paul, D. R. Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings. *Polymer (Guildf)*. **32**, 840–850 (1991).
- 29. Hellums, M. W., Koros, W. J., Husk, G. R. & Paul, D. R. Fluorinated polycarbonates for gas separation applications. *J. Membr. Sci.* **46**, 93–112 (1989).
- 30. Chen, W.-J. & Martin, C. R. Gas-transport properties of sulfonated polystyrenes. *J. Membr. Sci.* **95**, 51–61 (1994).
- 31. Perego, G., Roggero, A., Sisto, R. & Valentini, C. Membranes for gas separation based on silylated polyphenylene oxide. *J. Membr. Sci.* **55**, 325–331 (1991).
- 32. Li, X.-G., Kresse, I., Xu, Z.-K. & Springer, J. Effect of temperature and pressure on gas transport in ethyl cellulose membrane. *Polymer (Guildf)*. **42**, 6801–6810 (2001).
- 33. Hosseini, S. S. & Chung, T. S. Carbon membranes from blends of PBI and polyimides for N_2/CH_4 and CO_2/CH_4 separation and hydrogen purification. *J. Membr. Sci.* **328**, 174–185 (2009).