Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

Supporting information for

Engineering interface structure between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells

Young Chan Kim,^{a,⊥} Tae-Youl Yang,^{a,⊥} Nam Joong Jeon, ^a Jino Im,^a Seunghun Jang,^a Tae Joo Shin,^b Hee-Won Shin,^c Sol Kim,^d Eunyeong Lee,^d Sanghak Kim,^d Jun Hong Noh,^a Sang Il Seok*,^{ae} and Jangwon Seo*,^a

^aDivision of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon 305-600, South Korea

^b Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, South Korea

^c Department of Energy Science, School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea

^dCentral Advanced Research & Engineering Institute, Hyundai Motor Company, 37 Cheoldoangmulgwanro, Uiwang-si, Gyeonggi-do, 16082, Korea

^eSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, South Korea

[⊥]These authors contributed equally to this work *E-mail: jwseo@krict.re.kr and seoksi@krict.re.kr (seoksi@unist.ac.kr)

Device fabrication

F-doped SnO₂ (FTO, Pilkington, TEC8) substrate was cleaned in an ultrasonic bath containing detergents for 30 min and then a dense blocking layer of TiO₂ (60 nm, bl-TiO₂) was deposited onto the FTO by spray pyrolysis using a 20 mM titanium diisopropoxide bis(acetylacetonate) solution (Aldrich) at 450 °C. A 100-nm thin mesoporous (mp)-TiO₂ was spin-coated on top of the bl-TiO₂/FTO substrate at 1000 rpm for 50 s using home-made TiO₂ (~ 50 nm in particle size) pastes. Where, the pristine paste had been diluted in 2methoxyethanol (1g / 5mL), and calcinated at 500 °C for 1 h in air which led to a thickness of about 100 nm. The (FAPbI₃)_{0.85}(MAPbBr₃)_{0.15} perovskite solutions with small excess of PbI₂ were then coated onto the mp-TiO₂/bl-TiO₂/FTO substrate uniformly heated to ~80 °C by two consecutive spin-coating steps, at 1000 and 5000 rpm for 15 s and 10 s, respectively. During the second spin-coating step, 1 mL ethyl ether was poured onto the substrate. The 1.05M solution for (FAPbI₃)_{0.85}(MAPbBr₃)_{0.15} perovskite was obtained by dissolving NH₂CH=NH₂I (=FAI) and CH₃NH₃Br(=MABr) with PbI₂ and PbBr₂ in N-Ndimethylformamide(=DMF) and dimethylsulfoxide(=DMSO) =(6 : 1 v/v). The different inorganic-organic lead halide triiodide powders were prepared by precipitation using toluene at room temperature from the desired compositional solutions obtained by dissolving FAI and MABr powders with PbI₂ and PbBr₂ in 2-methoxyethanol. Then the substrate was dried on a hot plate at 100 °C for 10 min. A Spiro-OMeTAD (LUMTEC)/chlorobenzene (30 mg/ 1 ml) solution with an additive of 22.5 µl Li-bis(trifluoromethanesulfonyl) imide (Li-TFSI)/acetonitrile (170 mg/ 1 ml), 22.5µl 4-tert-butylpyridine (TBP)/acetonitrile (1ml / 1ml) and tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)-cobalt(III) tris(bis(trifluoromethylsulfonyl)imide:(FK209)/acetonitrile (150mg/1ml) was spin-coated on (FAPbI₃)_{0.85}(MAPbBr₃)_{0.15}/mp-TiO₂/bl-TiO₂/FTO substrate at 3000 rpm for 30 s. Also, the

CuPc (Sigma)/chlorobenzene (10mg/1ml) solution was prepared with an additive of 7.5 μ l Li-TFSI/acetonitrile (170 mg/ 1 ml) and 7.5 μ l TBP/acetonitrile (1ml / 1ml). Finally, Au counter electrode was deposited by thermal evaporation. The active area of this electrode was fixed at 0.16 cm².

Characterizations and measurements

The morphologies of the perovskite film coated with or without CuPC and the prepared devices were investigated using FE-SEM (Tescan Mira 3 LMU FEG). The absorption spectra were obtained using a UV-visible spectrophotometer (Shimadzu UV 2550) in the wavelength range of 300 nm to 900 nm. The photovoltaic properties of the devices were measured using a solar simulator (Newport, Oriel Class A, 91195 A) with a source meter (Keithley 2420) at AM 1.5 G 100 mAcm⁻² of illumination and a calibrated Si-reference cell certificated by NREL. The J-V curves of all the devices were measured by masking the active area using a metal mask with an area of 0.096 cm². The XRD spectra were measured using a Rigaku Smart Lab X-ray diffractometer to identify the crystal phase of the prepared films. Grazing incidence X-ray diffraction (GIXD) measurements were conducted at PLS-II 6D UNIST-PAL beamline of Pohang Accelerator Laboratory in Korea. The X-rays coming from the bending magnet are monochromated (wavelength $\lambda = 1.069$ Å) using a double crystal monochromator and focused both horizontally and vertically (120 (V) x 150 (H) µm2 in FWHM @ sample position) using the sagittal Si(111) crystal and toroidal mirror. The vacuum GIXD sample chamber is equipped with a 5-axis motorized stage for the fine sample alignment. The incidence angle of X-ray beam was set to 0.15°, which is close to the critical angle of perovskites. Two-dimensional GIXD patterns were recorded with a 2D CCD detector (Rayonix MX 225-HS, USA). Diffraction angles were calibrated by a pre-calibrated sucrose (Monoclinic, P21, a = 10.8631 Å, b = 8.7044 Å, c = 7.7624 Å, b = 102.9380) [R. C.

Hynes and Y. Le Page, J. Appl. Cryst. 24 (1991) 352–354] and the sample-to-detector distance was about 246.4 mm. For Raman analysis, CuPC/perovskite composite powder was collected by mixing a tiny powder of FAPb13 into a chlorobenzene solution of CuPC, followed by filtration and drying process. A Bruker Senterra Raman spectroscope with a 532 nm laser line was used at room temperature. Adhesive tapes were attached on the top of devices where surface of HTMs (CuPC, Spiro-OMeTAD, and PTAA, repectively) is exposed and removed the tape by pulling it off rapidly back upon itself at as close to an angle of 180° as possible. Scotch[®] MagicTM tape or Scotch[®] double side tape was used as an adhesive tape. Time-resolved photoluminescence (TRPL) decay profiles were measured at 780 nm with 550 nm excitation of OPO laser system (EKSPLA, NT 342A-10-AW). The pulse energy was strongly attenuated to less than 1µJ, in order to avoid nonlinear effect such as exciton-exciton annihilation. Emissions from samples were collected by a monochromator (Princeton Instruments, SP2150) equipped with a PMT (Hamamatsu, H10721-20). The output signal from a PMT was recorded with a 500 MHz digital oscilloscope (Agilent, DSO-X 3054A).

Thermal stability of HTMs

Figure S1. CuPC vs Spiro-OMeTAD. (a) Molecular structure of CuPC and Spiro-OMeTAD. (b) UV-vis absorption spectrum of CuPC film state. (c) DSC trace of CuPC and Spiro-OMeTAD (2nd cooling at 10 °C/min) (d) X-ray diffraction patterns of CuPC and Spiro-OMeTAD in film state before (black color) and after (red color) annealing at 130 °C for 30 min.

Figure S2. AFM images for the as-prepared films of CuPC (a), Spiro-OMeTAD (b), and (c) PTAA on top of the perovskite film. AFM images for the annealed films (at 130 °C for 30 min in nitrogen-filled glove box) of CuPC (d), Spiro-OMeTAD (e), and (f) PTAA on top of the perovskite film. The scale is 3 μ m.

Performance of devices

Figure S3. External quantum efficiency measurements of a CuPC-applied perovskite solar cell.

Figure S4. Distribution of power conversion efficiencies for devices with CuPC.

Figure S5. Time-resolved photoluminescence (TRPL) spectra for a perovskite film (black), a Spiro-OMeTAD / perovskite bilayer film (blue), and a CuPC / perovskite bilayer film (red).

Figure S6. (a) AFM image for the perovskite film prepared from Figure 3 and (b) (c) their top view SEM images. The scale bar is 500 nm and 100 nm for b and c, respectively.

CuPC arrangement

Figure S7. (a) 2D GIWAXS image of FTO/d-TiO₂/mp-TiO₂/perovskite/CuPC. (as the same in Figure 3) (b) Radial line profiles at 90 °. Inset shows the molecular structure of CuPC and the calculated distances (of the extended molecular length (blue arrow) and layer spacing (black arrow)). (c) Intensity plots as a function of azimuthal angle along the ring at q=0.37 Å⁻¹, assigned to CuPC film. Inset shows multiple orientations (A, B, and B') of CuPC. (d) The proposed schematic of molecular arrangement of CuPC at the interface of the perovskite film.

Cl-induced perovskite film and J-V curve comparison

Figure S8. (a) Top view SEM image for Cl-induced perovskite film [reference: J. Qing *et. al. org. electronics* (2016), 38, 144-149.] and (b) its magnified image. The scale bar is 1 μ m and 100 nm for a and b, respectively. (c) 2D-GIWAXS images of Cl-induced perovskite film, (d) J-V curves for the devices employing Cl-induced perovkite film and the perovskite film used in this work (from Figure 3).

GIWAXS data as a function of incident angle

The relation between the penetration depth (Λ) and the incident angle is described by

Figure S9. Penetration depth for the perovskite layer as a function of incident angle. In SEM image interaction thickness for incident angle of 0.3 ° is marked.

We did GIWAXS measurements using various incident angles from 0.08 $^{\circ}$ to 0.5 $^{\circ}$.

Figure S10. (a) GIWAXS spectrum at the angle of 90 $^{\circ}$ with variation of incident angles. (b) Integrated intensity of scattering peaks for (001)CuPC (black), (100)PbI₂ (red), and (100)perovskite (blue) as a function of incident angles.

Figure S11. PCE of PSCs with using CuPC, PTAA, and the double layer of CuPC and PTAA as a HTM. To prepare the double layer of CuPC (~thin layer) and PTAA, PTAA solution in toluene was additionally spin-coated on top of CuPC-coated device.

Thermal cycling test in dry air

	Test 1	Test 2
Temperature range	-40 ~ 85 °C	-40 ~ 110 °C
Ramp rate	1 °C / min	1.8 °C / min
Dwell time @ max. & min. temperature	10 min	60 min
Number of cycles	50	3
¥C 1, 11.		

* for non-encapsulated devices

Figure S12. Power conversion efficiencies of CuPC-PSCs and PTAA-PSCs without encapsulation before and after the thermal cycling test with the temperature range of -40 °C \sim 85 °C and -40 °C \sim 110 °C.