Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Tunable hysteresis effect for perovskite solar cells

Yaoguang Rong^{1†}, Yue Hu^{1†}, Sandheep Ravishankar^{2†}, Huawei Liu¹, Xiaomeng Hou¹,

Yusong Sheng¹, Anyi Mei¹, Qifei Wang¹, Daiyu Li¹, Mi Xu¹, Juan Bisquert^{2, 3*},

Hongwei Han^{1*}

¹ Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for

Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China

² Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain

³ Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah,

Saudi Arabia

[†]These authors contributed equally to this work.

*Email: hongwei.han@mail.hust.edu.cn bisquert@uji.es

Experiment

Materials

Unless stated otherwise, all materials were purchased from Sigma-Aldrich or Acros Organics and used as received. CH_3NH_3I was synthesized and purified according to literature procedures¹. The perovskite precursor solution was prepared by dissolving 573.0 mg PbI₂, 197.5 mg CH₃NH₃I and 13.70 mg 5-AVAI in 1.0 ml γ -butyrolactone (GBL), and stirred at 70 °C for 30 min. The TiO₂, ZrO₂ and carbon pastes were prepared as previously reported^{2, 3}.

Device fabrication.

Unless stated otherwise, the whole device fabrication process was carried out under ambient conditions (RH25-35%). The FTO-coated glass substrates (Tec15, Pilkington) were first etched by laser and cleaned by ultrasonication with detergent, deionized water, acetone and ethanol. The c-TiO₂ layer was then deposited on the patterned substrates by aerosol spray pyrolysis as follow: The patterned FTO substrate was placed on a hotplate with a mask, as shown in Figure S1, and heated up to 450 °C. A titanium diisopropoxide bis(acetylacetonate) solution was diluted in ethanol (1:39, volume ratio), and kept in a glass sprayer which was purchased from Sigma-Aldrich. The distance between the sprayer and the hotplate was ~ 10 cm, and the spraying angle was 60-70 degree. The carrier gas was oxygen with a flow rate of ~10 ml/s. The sprayer moved at a speed of ~10 cm/s, along the red line marked spraying path in Figure S1. After spraying, the c-TiO₂ coated FTO substrate was sintered at 450 °C for 30 min. After cooling to room temperature (RT, 25 °C), a 1 µm-thick mesoporous TiO₂ layer, a 2 µm-thick ZrO₂ spacer layer and a 10 µm-thick carbon layer were screen-printed on the substrates layer by layer. The TiO₂ layer and ZrO₂ layer were sintered at 450 °C for 30 min, and the carbon layer was sintered at 400 °C for 30 min, forming the mesoporous triple-layer based scaffold. After cooling to room temperature, the perovskite precursor solution was infiltrated by drop casting via the top of the carbon layer. After drying at 50 °C for one hour, the printable mesoscopic PSCs were obtained.

Characterization

The thickness of the films was measured by a profilometer (DektakXT, Bruker). The atomic force microscope (AFM) measurements were performed on SPM9700 (Shimadzu). Photocurrent-density voltage (*J-V*) curves were characterized with a Keithley 2400 source meter and a Newport solar simulator (model 91192). The power of the simulated light was calibrated to 100 mW cm⁻² using a Newport Oriel PV reference cell (model 91150V). The active area of the device is about 0.8 cm² and a black mask with a circular aperture (0.126 cm²) was applied for *J-V* measurements. The *J–V* testing was performed with forward and backward scan directions at a scan rate of 250 mV s⁻¹, 100 mV s⁻¹, 50 mV s⁻¹, and 25 mV s⁻¹ (sweep delay time of 100 ms). Before *J-V* scans, the devices were usually subjected to the simulate sun light for several minutes. All the measurements were carried out at RH25-35% and room temperature.

Condition	$c-TiO_2 \times 1$	$c-TiO_2 \times 2$	$c-TiO_2 \times 3$	$c-TiO_2 \times 4$
UV-Ozone 0 min	Normal	Normal	Normal	Normal
UV-Ozone 2.5 min	Inverted	Free	Normal	Normal
UV-Ozone 10 min	Inverted	Inverted	Normal	Normal
UV-Ozone 30 min	Inverted	Inverted	Free	Normal

Table S1 Dependence of hysteresis effect on spraying cycles of $c-TiO_2$ and UV-Ozone treatment. The hysteresis effect has been defined as normal, free and inverted.

Table S2. Series resistance and shunt resistance of hysteresis-normal, hysteresis-free, and hysteresis-inverted devices measured at different scan directions and scan rates ($R_{\rm S}$: Ω cm²; $R_{\rm SH}$: k Ω cm²).

	F-R	scan	R-F	scan	F-R	scan	R-F	scan	F-R	scan	R-F	scan	F-R	scan	R-F	scan
	25 mV s ⁻¹				50 mV s ⁻¹			100 mV s ⁻¹			250 mV s ⁻¹					
	R _S	R _{SH}	R _S	$R_{\rm SH}$	R _S	R _{SH}	R _S	R _{SH}	R _S	R _{SH}	R _S	$R_{\rm SH}$	R _S	R _{SH}	R _S	$R_{\rm SH}$
Nor	6.27±	0.59±	6.49±	0.53±	6.15±	0.71±	5.87±	0.28±	5.95±	0.71±	5.48±	0.49±	5.46±	0.45±	5.53±	0.20±
mal	0.24	0.16	0.30	0.40	0.21	0.21	0.19	0.10	0.14	0.34	0.12	0.26	0.20	0.27	0.15	0.07
Enco	6.60±	0.50±	7.24±	0.66±	6.24±	0.36±	7.02±	1.22±	6.19±	0.51±	6.62±	0.4±0.	6.42±	0.51±	6.53±	0.43±
Free	0.13	0.27	0.26	0.4	0.21	0.22	0.18	0.48	0.1	0.23	0.16	24	0.21	0.27	0.02	0.21
Inver	6.25±	0.58±	6.49±	0.36±	6.15±	0.69±	5.88±	0.38±	5.95±	0.71±	5.48±	0.49±	5.51±	0.56±	5.52±	0.29±
ted	0.22	0.13	0.26	0.14	0.19	0.19	0.17	0.25	0.14	0.34	0.12	0.26	0.20	0.35	0.13	0.20

Table S3 Fitting decay times of time-resolved photoluminescence (TRPL)

spectra. The semi-devices were fabricated as $FTO/c-TiO_2/m-TiO_2/ZrO_2/Perovskite$, and the c-TiO₂ layers were sprayed with 1-4 cycles.

c-TiO ₂ cycle	$ au_1$ (ns)	$ au_2$ (ns)
	1.12	33.91
1	1.16	36.48
	1.10	36.89
	2.16	51.29
2	1.29	37.90
	1.11	38.39
	1.23	39.95
3	1.19	37.68
	1.18	37.58
	1.46	40.05
4	1.39	39.57
	1.21	40.66

Fig. S1 The spraying deposition process of the compact-TiO₂ (c-TiO₂) layer. The sprayer is purchased from Sigma-Aldrich, and the carrier gas is N_2 with a flow rate of ~10 ml/s.

Fig. S2 The dependence of R_S and R_{SH} on scan rates for hysteresis-normal, hysteresis-free and hysteresis-inverted devices.

Fig. S3 Surface morphology characterizations. The SEM images of the bare FTO substrate (a, b) and c-TiO₂ sprayed (two cycles) FTO substrate (c, d).

Fig. S4 XPS results of FTO substrates sprayed with 1-4 cycles of $c-TiO_2$ layer. The measurements were performed using the same accumulation time, and the Ti and Sn peak areas are compared.

Fig. S5 Work function of FTO substrates sprayed with 0-4 cycle of $c-TiO_2$ layer (Error bars represent *s.d.* calculated from five values obtained with the same testing parameters).

Fig. S6 Time-resolved photoluminescence (TRPL) spectra of $FTO/c-TiO_2/m-TiO_2$ /ZrO₂/Perovskite semi-devices. The c-TiO₂ layers were sprayed with 1-4 cycles. For each spraying cycle, three samples were prepared and characterized.

Fig. S7 Dependence of V_{OC} on scanning rates. The hysteresis-normal, -free and - inverted devices were continuously scanned with an interval of 0 s or discontinuously scanned with an interval of 60 s at 250 mV s⁻¹, 100 mV s⁻¹, 50 mV s⁻¹ and 25 mV s⁻¹ firstly in F-R direction, and then in R-F direction.

Reference

- 1. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin and M. Grätzel, *J. Am. Chem. Soc.*, 2012, **134**, 17396-17399.
- 2. Z. Ku, Y. Rong, M. Xu, T. Liu and H. Han, *Sci. Rep.*, 2013, **3**, 3132.
- 3. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel and H. Han, *Science*, 2014, **345**, 295-298.