Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017



## **Energy & Environmental Science**



Figure S1 (Top graph) Differential scanning calorimetry (DSC) data for the pristine LDPE (black – bottom plot), the intermediate LDPE-g-poly(vinylbenzyl chloride)(100 kGy) intermediate membrane (red – middle plot), and the final LDPE-AEM(100 kGy) (green – top, least intrense plot). (Bottom graph) DSC data for the pristine ETFE (black – top plot), the intermediate ETFE-g-poly(vinylbenzyl chloride)(30 kGy) intermediate membrane (red – bottom plot), and the final ETFE-AEM(30 kGy) (green – middle plot). This is uncorrected raw data (*i.e.* not normalised) from the 2<sup>nd</sup> heating cycle. A heating rate of 10°C / min was used.



Figure S2 The Raman spectra of the pristine LDPE (black) and ETFE (red) precursor films used to make the radiation-grafted anion-exchange membranes (RG-AEM) in this study: (left) wavenumber range of most diagnostic value; (right) full wavenumber range.



Figure S3 The Raman spectra of the precursor LDPE film (bottom), the LDPE-g-poly(VBC) intermediate film (middle) and the LDPE-AEM(100 kGy) (top). All RG-AEMs were in the Clanion form. The spectra were recorded with a 532 nm (green) laser. All spectra were normalised to the intensity of the 1130 cm<sup>-1</sup> peak to aid visual comparison.#



Figure S4 The <sup>15</sup>N solid-state NMR of the LDPE-AEM(100 kGy) in the Cl<sup>-</sup> anion form. Nitromethane was used as the shift reference. Magic angle spinning rotation rate = 8 kHz.



Figure S5 The Raman micrographs showing the trimethylammonium distributions in the RG-AEMs: (left) 753 cm<sup>-1</sup> (relates to the trimethylammonium group) vs. 1130 cm<sup>-1</sup> (relates to the LDPE backbone) gives an indication of the level of amination distribution through the cross-section of LDPE-AEM(100 kGy); (right) 753 cm<sup>-1</sup> vs. 833 cm<sup>-1</sup> (relates to the ETFE backbone) gives an indication of the level of amination distribution through the cross-section of ETFE-AEM(30 kGy). The laser was used was of  $\lambda$  = 532 nm.



Figure S6 Tensile stress-strain curves for the precursor LDPE before (solid) and after (dashed) exposure to 100 kGy electron-beam absorbed dose.



Figure S7 Tensile stress-strain curves for LDPE-AEM(100 kGy) (solid) and ETFE-AEM(30 kGy) (dashed), where the RG-AEMs were in the Cl<sup>-</sup> anion forms (dehydrated).



Figure S8 The <sup>13</sup>C solid-state NMR of the ETFE-AEM(30 kGy) before (bottom spectra) and after ageing in aqueous NaOH (1 mol dm<sup>-3</sup>) 80°C for 7 d (top spectra). Tetramethylsilane was used as the shift reference. Magic angle spinning rotation rate = 10 kHz. The NMR spectra were normalised to the  $\delta$  = 22 ppm to aid visual comparison.



Figure S9 The beginning-of-life H<sub>2</sub>/O<sub>2</sub> AEMFC performance of the LDPE-AEM(100 kGy) with a Ag/C (0.8 mg cm<sup>-2</sup>) cathode at 60°C (●, ○) and 80°C (■, □): PtRu/C(50%wt Pt and 25%wt Ru) anodes (0.4 mg<sub>Pt</sub> cm<sup>-2</sup> loading). The 1.0 SLPM (RH = 100%) gas supplies were not pressurised.



Figure S10 The beginning-of-life  $H_2/O_2$  AEMFCs performances with an ETFE-AEM (60  $\mu$ m hydrated thicknesses) at 60°C with Ag/C (40%wt Ag, 0.8 mg<sub>Ag</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O) and Au/C (40%wt Au, 0.8 mg<sub>Au</sub> cm<sup>-2</sup>) ( $\bullet$ ,O



Figure S11  $H_2/O_2$  AEMFC performance with an ETFE-AEM (60  $\mu$ m hydrated thicknesses) at 60 °C with a metal-free XC-72 Carbon (100%wt C, 0.4 mg<sub>c</sub>cm<sup>-2</sup>) cathode along with a PtRu/C(50%wt Pt and 25%wt Ru) anode (0.4 mg<sub>Pt</sub> cm<sup>-2</sup> loading). The 1.0 SLPM supplies were not pressurised: the dew point temperatures for the test were 60 °C (RH = 100%).

Table S1 A summary of the tensile mechanical properties of the pre- and post-degraded LDPE-AEM(100 kGy) and ETFE-AEM(30 kGy).

|                             | Stress at break /MPa | Elongation at break (%) | Young's modulus / MPa |
|-----------------------------|----------------------|-------------------------|-----------------------|
| LDPE-AEM(100 kGy)           | 29.3                 | 276                     | 386                   |
| ETFE-AEM(30 kGy)            | 28.9                 | 189                     | 412                   |
| Degradated LDPE-AEM (60 °C) | 23.4                 | 337                     | 141                   |
| Degradated ETFE-AEM (60 °C) | 24.1                 | 128                     | 334                   |
| Degradated LDPE-AEM (80 °C) | 23.2                 | 293                     | 143                   |
| Degradated ETFE-AEM (80 °C) | 20.4                 | 15.7                    | 332                   |