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1 Methods

1.1 Problem statement
We aim to quantify the benefits of tackling climate change by meeting a set of individual 
emissions reduction targets acting in cooperation. To do so, we consider as test bed the U.S. 
Clean Power Plan1 which stablishes individual state emissions reduction targets to curb CO2 
emissions from the U.S. power sector by 35% from 2012 baseline levels.

Essentially, we are given a set of regions (i.e. U.S. states) that need to reduce their CO2 
emissions from electricity generation by acting either as isolated entities or in cooperation. 
Emissions reduction targets are provided for every state, which can be met individually in 
every region or in cooperation (i.e. stablishing partnerships so that the joint emissions fall 
below the summation of individual targets, while some regional targets might be exceeded as 
long as others compensate them). Each region is considered as a load area with a specific 
electricity demand. We are also given a set of potential technologies for electricity generation 
for which their carbon intensities and costs data in every region are known. The goal of the 
analysis is then to determine the optimal portfolio of technologies and electricity trades 
between regions that satisfy the electricity demand at minimum cost while not surpassing the 
emissions targets.  

To carry out this analysis, we have developed a mixed-integer linear programming (MILP) 
model, referred to as ERCOM (Emission Reduction Cooperation Model) that will be described 
in detail in the ensuring section. ERCOM is capable of systematically identifying the most cost-
effective ways of meeting the U.S electricity demand for different levels of cooperation among 
states. 

1.2 ERCOM model
The model proposed herein minimises the U.S. electricity generation cost while satisfying the 
emissions targets imposed in the Clean Power Plan1 (CPP) for different levels of cooperation 
among states. Specifically, the optimisation is performed for 2030, which is the policy horizon 
in the CPP. The model, referred to as ERCOM henceforth (as an acronym of Emissions 
Reduction Cooperation Model), takes the form of a mixed-integer linear program (MILP) where 
binary variables denote whether states meet their targets in partnerships or acting 
independently, while continuous ones represent technologies capacities, electricity 
generation, inter-state electricity flows and electricity trades with Canada. ERCOM considers 
U.S states as load demand areas which are interconnected among them by transmission lines. 
The set of potential options for power generation includes coal, natural gas, nuclear, 
hydropower, solar, wind, geothermal and biomass. Furthermore, ERCOM ensures the 
reliability of the system by enforcing the use of back-up generation based on firm technologies 
(which make up for power drops in power supply from intermittent renewable sources). The 
cost of both standard and back-up generation is assessed via the levelised cost of electricity 
(i.e. LCOE), which considers operating and capital costs, annualised over their expected 
lifetime. 

The model provides a lower bound on the U.S. electricity generation cost for a given number of 
states cooperating in partnerships. For simplicity, we do not calculate the specific partnerships 
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that could be formed (i.e. how many partnerships exist and which states cooperate within 
each one), but rather assume the existence of a global partnership encompassing all the states 
willing to cooperate. This assumption simplifies the combinatorial complexity of the problem. 
Further details on the model formulation and assumptions are provided in the ensuing 
sections.

1.2.1 Mathematical formulation
The ERCOM model comprises three main blocks of equations: those related to carbon 
emissions, load-meeting constraints and equations required to compute the cost of electricity 
generation. These blocks of equations are presented and described in detail next. Note that we 
use italic font to represent variables along the text.

1.2.1.1 Carbon emissions
The CPP imposes specific reduction targets on the territorial (i.e. production-based) CO2 
emissions of every state j (parameter TARGj). Such targets must be met by every state either 
individually or by sharing them with those states belonging to the global partnership. To model 
this, we introduce binary variable Yj, which takes a value of one if state j belongs to the global 
partnership and zero otherwise. This binary variable is then used in the following equation:

𝐸𝑀𝑗 ≤ 𝑇𝐴𝑅𝐺𝑗 + 𝑌𝑗𝑀1    ∀𝑗 (S1)
Here,  is a continuous variable that represents the CO2 emissions of state j and M1 is a 𝐸𝑀𝑗

sufficiently large parameter. This equation works as follows: when state j addresses the CPP 
individually, the binary variable is zero and enforces the term YjM1 to be zero as well, so the 
corresponding target TARGj is imposed on the states’ emissions. Conversely, when state j 
belongs to the global partnership, the binary variable is one and the term YjM1 takes a very big 
positive value (i.e. M1), thereby relaxing the constraint so that no bound is effectively imposed 
on its individual emissions. Furthermore, states belonging to the partnership share their 
targets in a way such that a global partnership emissions cap must be ultimately satisfied, as 
imposed via Eq. (S2).

∑
𝑗

𝑌𝑗𝐸𝑀𝑗 ≤ ∑
𝑗

𝑌𝑗𝑇𝐴𝑅𝐺𝑗 (S2)

That is, the summation of the emissions of those states belonging to the global partnership 
must not exceed the summation of targets of its individual members. Note that when a state 
acts independently, Yj is zero and therefore its corresponding emissions and target disappear 
from both sides of the inequality. The product of Yj and EMj introduces a nonlinear term into 
the model. To keep it linear and simplify the calculations, we linearise the nonlinear term 
through the following equations:

∑
𝑗

𝑌𝐸𝑀𝑗 ≤ ∑
𝑗

𝑌𝑗𝑇𝐴𝑅𝐺𝑗 (S3)

𝑌𝐸𝑀𝑗 ≤ 𝐸𝑀𝑗 + 𝑀1(1 ‒ 𝑌𝑗)    ∀𝑗 (S4)
𝑌𝐸𝑀𝑗 ≥ 𝐸𝑀𝑗 ‒ 𝑀1(1 ‒ 𝑌𝑗)    ∀𝑗 (S5)
𝑌𝐸𝑀𝑗 ≤ 𝑌𝑗𝑀1    ∀𝑗 (S6)
Following this approach, the product  in Eq. (S2) is replaced by continuous variable , 𝑌𝑗𝐸𝑀𝑗 𝑌𝐸𝑀𝑗

which is defined via constraints (4-6). These equations work as follows: when state j 
cooperates in the partnership (i.e. Yj = 1), the term M1(1-Yj) in Eqs. (S4-S5) vanishes, thus 
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enforcing  to be equal to . Eq. (S6) is then relaxed and does not impose any additional 𝑌𝐸𝑀𝑗 𝐸𝑀𝑗

bound on . Conversely, when state j does not cooperate in the partnership, then Yj = 0 𝑌𝐸𝑀𝑗

and Eq. (S6) forces  to be zero, while Eqs. (S4-S5) are relaxed and do not impose any 𝑌𝐸𝑀𝑗

additional bound. Recall that when Yj = 0, the production-based emissions of state j are 
bounded via Eq. (S1). 

The number of states belonging to the global partnership (denoted by parameter CS) is 
controlled via Eq. (S7).

∑
𝑗

𝑌𝑗 = 𝐶𝑆 (S7)

As will be later discussed, the model is solved for different values of CS, thereby reflecting 
different levels of cooperation.

State emissions are calculated from the electricity generated via technology i in each state j 
and the associated carbon intensity (parameter CIi,j), as given by Eq. (S8). Note that the 

amount of electricity generated is modelled via continuous variables  and , which 𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗

account for standard and backup generation, respectively. 

𝐸𝑀𝑗 = ∑
𝑖

𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗𝐶𝐼𝑖,𝑗 + ∑

𝑖

𝐺𝐸𝑁𝐵𝑈
𝑖,𝑗 𝐶𝐼𝑖,𝑗         ∀𝑗 (S8)

Note that our model takes into account the need to resort to firm energy sources as ancillary 
systems so as to satisfy peaks in demand when facing unfavourable weather conditions. This 
will be explained in more detail later in this document.

1.2.1.2 Load-meeting constraints
The total amount of electricity generated in state j with technology i is bounded according to 

the availability of the associated resource in the state (which is denoted by parameter ), 𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗

as given by Eq. (S9). 

𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗 ≤ 𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗          ∀𝑗,𝑖 ≠ 𝑐𝑜𝑎𝑙,𝑐𝑜𝑎𝑙 𝐶𝐶𝑆,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 𝐶𝐶𝑆 (S9)

Eq. (S9) applies to all the technologies except for those competing for the same resources. 
Hence, coal-based technologies (i.e. coal and coal with carbon capture and storage (CCS)) 
compete for coal and are grouped into set CT (i.e. CT = {coal, coal CCS}), as illustrated in Eq. 
(S10). 

∑
𝑖 ∈ 𝐶𝑇

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇

𝑖',𝑗
         ∀𝑗,𝑖' = 𝑐𝑜𝑎𝑙 (S10)

Eq. (S11) is defined for natural gas-based technologies (i.e. natural gas and natural gas CCS), 
which form the set NGT (i.e. NGT = {natural gas, natural gas CCS}), and consume natural gas.

∑
𝑖 ∈ 𝑁𝐺𝑇

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇

𝑖',𝑗
         ∀𝑗,𝑖' = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 (S11)
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Furthermore, country-wise bounds on generation are imposed via parameter  on 𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂
𝑖

those technologies which consume resources that can be traded between states (i.e. coal, 
natural gas, biomass, coal CCS and natural gas CCS). In these cases, besides inland potentials, it 
is necessary to enforce a global limit on the corresponding resource according to its availability 
in the whole country (Eqs. S12-S14). 

∑
𝑗

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂
𝑖          ∀ 𝑖 = 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (S12)

∑
𝑗

∑
𝑖 ∈ 𝐶𝑇

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂

𝑖'
        ∀ 𝑖' = 𝑐𝑜𝑎𝑙 (S13)

∑
𝑗

∑
𝑖 ∈ 𝑁𝐺𝑇

(𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗) ≤ 𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂

𝑖'
        ∀ 𝑖' = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 (S14)

The amount of electricity generated (i.e. MWh) is constrained to be lower than the capacity 

installed (parameters  and , in MW). Capacity and generation are linked through 𝐶𝐴𝑃𝑆𝑇
𝑖,𝑗 𝐶𝐴𝑃𝐵𝑈

𝑖,𝑗

the capacity factor (represented by parameter CFi,j) and the annual hours (parameter H), as 
shown in Eqs. (S15) and (S16). 

𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 ≤ 𝐶𝐴𝑃𝑆𝑇

𝑖,𝑗𝐶𝐹𝑖,𝑗𝐻          ∀𝑖,𝑗 (S15)
𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗 = 𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗𝐶𝐹𝑖,𝑗𝐻 ∀𝑖,𝑗 (S16)

he capacity factor is the ratio between the actual power output and the potential output at full 
nameplate capacity. This factor takes into account periods in which the plant is either out of 
service (e.g. due to plant maintenance or limited resources) or operated below its nominal 
capacity. Note that the bound on standard generation (Eq. (S15)) can be imposed as an 
inequality, even if the constraint will always be active in the optimal solution (i.e. satisfied as a 
strict equality). For back-up systems, the equation must be satisfied as a strict equality (Eq. 
S16), as these technologies must ensure the system reliability.

The CPP does not contemplate installing additional nuclear facilities as a compliance strategy 
to reduce CO2 emissions. To model this, Eq. (S17) fixes the nuclear capacity, modelled by 

parameter , to its present value.𝐶𝐴𝑃𝐶𝑈𝑅
𝑖,𝑗

𝐶𝐴𝑃𝑆𝑇
𝑖,𝑗 + 𝐶𝐴𝑃𝐵𝑈

𝑖,𝑗 = 𝐶𝐴𝑃𝐶𝑈𝑅
𝑖,𝑗      ∀𝑗,𝑖 =  𝑛𝑢𝑐𝑙𝑒𝑎𝑟 (S17)

The model must ensure that power can be dispatched at any time. We therefore differentiate 
between dispatchable (i.e. coal w/o CCS, natural gas w/o CCS, nuclear, hydropower, biomass, 
geothermal and solar thermal) and non-dispatchable (i.e. solar PV rural and rooftop and wind 
onshore and offshore) technologies. The former can be dispatched according to the power 
demand, while the latter depend on the availability of intermittent resources. Hence, to 
ensure system reliability it is necessary to support intermittent renewable energies (IR) with 
ancillary systems such as back-up generation based on firm technologies (both renewable and 
non-renewable) or energy storage. Here, we consider the former option, which is modelled via 
Eq. (S18), where BUC is a parameter providing the capacity of dispatchable technologies that 
must be installed for every MW of non-dispatchable intermittent technologies, while IR is the 
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set of non-dispatchable technologies requiring ancillary systems (i.e. IR = {solar PV (rural), solar 
PV (rooftop), wind onshore, wind offshore}). 

∑
𝑖 ∉ 𝐼𝑅

𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗 = 𝐵𝑈𝐶 ∑

𝑖 ∈ 𝐼𝑅

𝐶𝐴𝑃𝑆𝑇
𝑖,𝑗 ∀𝑗 (S18)

The back-up capacity of intermittent renewables is set to zero, as imposed by Eq. (S19). Note, 
that we consider solar thermal CST as a dispatchable technology, since it incorporates thermal 
storage that allows maintaining a reliable electric power system with high shares of 
renewables2–4.

𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗 = 0         ∀𝑗,𝑖 ∈ 𝐼𝑅 (S19)

Electricity transmission plays a key role in the electricity system optimisation, since it allows 
exploiting the region-specific abatement costs. Inter-state electricity trade is only allowed 
between neighbouring states (i.e. states j’ included in set NUj) participating in the global 
partnership (i.e. those for which Yj = 1). Hence, two conditions must be enforced for two states 
to exchange electricity: that they are neighbours and that they both belong to the global 
partnership, as given by Eqs. (S20-S21).

𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗,𝑗' ≤ 𝑌𝑗𝑀2    ∀𝑗,𝑗' ∈ 𝑁𝑈𝑗 (S20)

𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗,𝑗' ≤ 𝑌

𝑗'𝑀2    ∀𝑗,𝑗' ∈ 𝑁𝑈𝑗 (S21)

Here,  is a continuous variable accounting for the amount of electricity that state j 𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗,𝑗'

imports from state j’, and M2 is a sufficiently large parameter. As seen, when both states 

belong to the global partnership, then the corresponding binary variables are one (i.e.  𝑌𝑗 = 1

and ), implying that electricity can be exchanged between both provided it does not 
𝑌

𝑗' = 1

surpass the allowable limit M2. When any (or both) of the states are not in the partnership, 
then the electricity flow is set to zero.

Additionally, the electricity is subject to losses during transmissions. We model this via Eq. 

(S22), which links the electricity transmitted at origin (continuous variable ) to that 𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗,𝑗'

received at the final destination ( ) and the associated losses ( ). 𝑇𝑅𝐷𝐷𝐸𝑆𝑇
𝑗,𝑗' 𝑇𝑅𝐷𝐿𝑂𝑆𝑆

𝑗,𝑗'

𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗,𝑗' = 𝑇𝑅𝐷𝐷𝐸𝑆𝑇

𝑗,𝑗' + 𝑇𝑅𝐷𝐿𝑂𝑆𝑆
𝑗,𝑗'        ∀𝑗,𝑗' ∈ 𝑁𝑈𝑗 (S22)

That is, the final amount of electricity that reaches state j coming from state j’ ( ) is 𝑇𝑅𝐷𝐷𝐸𝑆𝑇
𝑗,𝑗'

equal to the initial amount sent from j’ ( ) minus the losses taking place in between (𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗,𝑗'

). Here, the transmission losses are considered proportional (parameter TLF) to the 𝑇𝑅𝐷𝐿𝑂𝑆𝑆
𝑗,𝑗'

distance between states j and j’ (parameter DISTj,j’) and the amount of electricity transmitted:

𝑇𝑅𝐷𝐿𝑂𝑆𝑆
𝑗,𝑗' = 𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗,𝑗' 𝐷𝐼𝑆𝑇𝑗,𝑗'𝑇𝐿𝐹        ∀𝑗,𝑗' ∈ 𝑁𝑈𝑗 (S23)
Electricity imports from Canada represent a key compliance strategy to curb U.S. CO2 
emissions. We allow electricity trades between the southern Canadian provinces (i.e. British 
Columbia, Alberta, Saskatchewan, Manitoba, Ontario and Quebec) and neighbouring states, 
regardless of whether these U.S. states participate or not in the partnership. Electricity imports 
through these transmission lines suffer from energy losses, which are calculated via Eqs (S24-
S25).

𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺
𝑗,𝑘 = 𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇

𝑗,𝑘 + 𝑇𝑅𝐷𝐶𝐴𝑁𝐿𝑂𝑆𝑆
𝑗,𝑘        ∀𝑗,𝑘 ∈ 𝑁𝐶𝑗 (S24)
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𝑇𝑅𝐷𝐶𝐴𝑁𝐿𝑂𝑆𝑆
𝑗,𝑘 = 𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺

𝑗,𝑘 𝐷𝐼𝑆𝑇𝐶𝐴𝑁𝑗,𝑘𝑇𝐿𝐹        ∀𝑗,𝑘 ∈ 𝑁𝐶𝑗 (S25)

Here, , represents the electricity sent from Canadian region k to U.S. state j, 𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺
𝑗,𝑘

 denotes the electricity reaching the state and  accounts for the 𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇
𝑗,𝑘 𝑇𝑅𝐷𝐶𝐴𝑁𝐿𝑂𝑆𝑆

𝑗,𝑘

electricity lost during transmission. DISTCANj,k is a parameter providing the distance between 
state j and Canadian region k (note that trade is only allowed between neighbour j-k pairs), 
while TLF represents the transmission losses factor.  

Total electricity imports from Canada cannot exceed a given percentage (denoted by 
parameter CTB) of the U.S. electricity demand (computed as the summation of the demand in 

each state ), as illustrated in Eq. (S26).𝐷𝐸𝑀𝑗

∑
𝑗

∑
𝑘 ∈ 𝑁𝐶𝑗

𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺
𝑗,𝑘 ≤ 𝐶𝑇𝐵∑

𝑗

𝐷𝐸𝑀𝑗 (S26)

Where  denotes the set of Canadian regions k which are neighbours to U.S. state j. 𝑁𝐶𝑗

Moreover, the amount of electricity imported by every state (i.e. imported from other U.S. 
states as well as from Canada) is bounded by the electricity demand in the state, as shown in 
Eq. (S27). This limits the capacity that a state has to act as a transmission node (i.e. a state is 
not allowed to import large amounts of electricity to later sell them to other states).

∑
𝑗' ∈ 𝑁𝑈𝑗

𝑇𝑅𝐷𝐷𝐸𝑆𝑇
𝑗,𝑗' + ∑

𝑘 ∈ 𝑁𝐶𝑗

𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇
𝑗,𝑘 ≤ 𝐷𝐸𝑀𝑗          ∀𝑗 (S27)

The demand satisfaction constraint ensures that the electricity demand of each state j, 
denoted by parameter DEMj, must equal the domestic electricity generation plus the input 
flows of electricity and minus the output flows, as illustrated in Eq. (S28). 

∑
𝑖

𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗 + ∑

𝑖 ∉ 𝐼𝑅

𝐺𝐸𝑁𝐵𝑈
𝑖,𝑗 + ∑

𝑗' ∈ 𝑁𝑈𝑗

𝑇𝑅𝐷𝐷𝐸𝑆𝑇
𝑗,𝑗' + ∑

𝑘 ∈ 𝑁𝐶𝑗

𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇
𝑗,𝑘 ‒ ∑

𝑗' ∈ 𝑁𝑈𝑗

𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗',𝑗
= 𝐷𝐸𝑀𝑗𝐷𝑆𝐹          ∀𝑗

(S28)

Here, DSF represents a demand satisfaction factor that is included to warrant the reliability of 
the system. That is, by forcing the system to cover the demand plus a reserve margin (i.e. DSF 
> 1), electricity supply is ensured even in case of outage. Note that demand and supply are 
matched annually rather than on an hour-per-hour basis. The hour-per-hour demand match is 
yet enforced by implementing back up generation systems in the supply.

1.2.1.3 Cost of electricity generation
The objective function of the ERCOM model seeks to minimise the total cost of electricity 
generation in U.S., denoted by continuous variable COSTTOT, which is given by the summation 
of the individual costs in all of the states, as shown in Eq. (S29).

𝐶𝑂𝑆𝑇𝑇𝑂𝑇 = ∑
𝑗

𝐶𝑂𝑆𝑇𝑗 (S29)

In turn, the cost of electricity generation in each state j (continuous variable ) accounts 𝐶𝑂𝑆𝑇𝑗

for the state annualised capital costs (continuous variable ), annual fixed and variable 𝐶𝑂𝑆𝑇𝐶𝐴𝑃
𝑗

operating costs (continuous variables  and , respectively), as well as the costs 𝐶𝑂𝑆𝑇𝐹𝐼𝑋
𝑗 𝐶𝑂𝑆𝑇𝑉𝐴𝑅

𝑗

derived from electricity imports from Canada ( ):𝐶𝑂𝑆𝑇𝐶𝐴𝑁
𝑗

𝐶𝑂𝑆𝑇𝑗 = 𝐶𝑂𝑆𝑇𝐶𝐴𝑃
𝑗 + 𝐶𝑂𝑆𝑇𝐹𝐼𝑋

𝑗 + 𝐶𝑂𝑆𝑇𝑉𝐴𝑅
𝑗 + 𝐶𝑂𝑆𝑇𝐶𝐴𝑁

𝑗 ∀𝑗 (S30)
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Note that the costs associated to inter-state trades are not considered in Eq. (S30), since they 
would cancel out in Eq. (S29) (i.e. the money paid by the states purchasing electricity is 

received by states selling it). State capital costs ( ) are determined from the installed 𝐶𝑂𝑆𝑇𝐶𝐴𝑃
𝑗

capacity of both, standard and back-up technologies (  and ), their unitary capital 𝐶𝐴𝑃𝑆𝑇
𝑖,𝑗 𝐶𝐴𝑃𝐵𝑈

𝑖,𝑗

costs ( ), their capacity factor ( ) and the total annual hours (H), as given by Eq. (S31). 𝐶𝑂𝐶𝐴𝑃
𝑖,𝑗 𝐶𝐹𝑖,𝑗

𝐶𝑂𝑆𝑇𝐶𝐴𝑃
𝑗 = ∑

𝑖
[(𝐶𝐴𝑃𝑆𝑇

𝑖,𝑗 + 𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗)𝐶𝑂𝐶𝐴𝑃

𝑖,𝑗 𝐶𝐹𝑖,𝑗𝐻] ∀𝑗 (S31)

The fixed operating costs of state j, denoted by continuous variable , are determined 𝐶𝑂𝑆𝑇𝐹𝐼𝑋
𝑗

from the capacity of standard and back-up technologies i that are installed (represented by 

variables  and , respectively), their unitary annual fixed operating costs ( ), the 𝐶𝐴𝑃𝑆𝑇
𝑖,𝑗 𝐶𝐴𝑃𝐵𝑈

𝑖,𝑗 𝐶𝑂𝐹𝐼𝑋
𝑖,𝑗

capacity factor of each technology i in state j ( ) and the total annual hours (H): 𝐶𝐹𝑖,𝑗

𝐶𝑂𝑆𝑇𝐹𝐼𝑋
𝑗 = ∑

𝑖
[(𝐶𝐴𝑃𝑆𝑇

𝑖,𝑗 + 𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗)𝐶𝑂𝐹𝐼𝑋

𝑖,𝑗 𝐶𝐹𝑖,𝑗𝐻] ∀𝑗 (S32)

Furthermore, the variable operating costs in state j ( ) are estimated from the 𝐶𝑂𝑆𝑇𝑉𝐴𝑅
𝑗

electricity generated by each technology i (both standard and back-up, that is,  and 𝐺𝐸𝑁𝑆𝑇
𝑖,𝑗

, respectively), and the unitary variable costs of those technologies in that state ( ), 𝐺𝐸𝑁𝐵𝑈
𝑖,𝑗 𝐶𝑂𝑉𝐴𝑅

𝑖,𝑗

as shown in Eq. (S33).

𝐶𝑂𝑆𝑇𝑉𝐴𝑅
𝑗 = ∑

𝑖
[(𝐺𝐸𝑁𝑆𝑇

𝑖,𝑗 + 𝐺𝐸𝑁𝐵𝑈
𝑖,𝑗)𝐶𝑂𝑉𝐴𝑅

𝑖,𝑗 ] ∀𝑗 (S33)

The cost of electricity imports from neighbouring Canadian regions k (continuous variable 

) to state j are determined from the electricity flows imported and a unitary 𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇
𝑗,𝑘

selling price ( ) via Eq. (S34):𝐶𝑂𝐶𝐴𝑁

𝐶𝑂𝑆𝑇𝐶𝐴𝑁
𝑗 = ∑

𝑘 ∈ 𝑁𝐶𝑗

𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇
𝑗,𝑘 𝐶𝑂𝐶𝐴𝑁 ∀𝑗 (S34)

Finally model ERCOM can be written in compact form as follows:

(𝑀𝐶𝑃𝑃) 𝑚𝑖𝑛 𝐶𝑂𝑆𝑇𝑇𝑂𝑇

𝑠.𝑡. 𝐸𝑞𝑠. (1,3 ‒ 34)
The model is solved for different values of the parameter CS (i.e. varying the number of states 
in the global partnership), starting from the case where states act independently from each 
other (CS = 0) and ending in the solution where all of them cooperate in a global partnership 
(CS = 47).

ERCOM was implemented in the General Algebraic Modelling System5 (GAMS) version 24.4.1. 
The model features 11,470 continuous variables, 47 binary variables and 8,167 constraints. 
The model was solved with CPLEX 24.4.6 on an AMD A8-5500 APU with Raedon 3.20 Ghz and 
8.0 GB RAM. The solution time of each instance was below 1 CPU second in the 
aforementioned computer.

1.2.2 Data description and assumptions
This section describes the major assumptions made in ERCOM along with the data fed into the 
model. We first solved the model assuming deterministic values of the parameters and later 
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on investigated the effects of various uncertainties via sensitivity analysis (see section 1.4 for 
the procedure followed and section 2.4 for the associated results).

1.2.2.1 Clean Power Plan: State targets
The CPP1 was adopted by the U.S. Environmental Protection Agency (EPA) on the 3th August 
2015, becoming the first and very big step in U.S. towards climate change mitigation. The 
overall goal of the CPP is to curb carbon emissions from the power sector by 32% (from 2005 
levels) by 2030 (i.e. equivalent to 35% from 2012 baseline levels). To achieve this overall global 
target, the CPP establishes individual state-by-state targets. In addition, it provides states with 
enough flexibility to design strategic plans to meet their targets, either acting individually or 
cooperating with other states. 

To set state-specific goals, EPA analysed affordable strategies for each state based on three 
building blocks: i) switching from coal-powered plants to natural-gas powered plants, ii) 
increasing low-carbon energy (i.e. increasing renewable energy generation), and, iii) improving 
the heat-rate of fossil-fuel fired plants to reduce their overall emissions rate. In practice, states 
have two compliance options, which translate into two types of CPP targets: (i) those imposed 
on the carbon intensities (rate-based approach) and (ii) those imposed over the total CO2 
emissions (mass-based approach). Without loss of generality, we use here targets on carbon 
intensities. These targets vary greatly across states (i.e. from 7% in Connecticut to 48% in 
South Dakota) owing to different electricity mixes, technological feasibilities and costs and 
emissions reduction potentials for each particular state.  

Figure S1 displays the U.S. state specific CPP goals (i.e. parameter , represented as a 𝑇𝐴𝑅𝐺𝐶𝐼
𝑗

reduction target in the figure) that should be accomplished in 2030. As observed, four states 
fall in the range 7-14% of emissions reduction level, five states in the range 14-21%, five states 
in the range 21-27%, eight states in the range 27-34%, 17 states in the range 34-41% and eight 
states in the range 41-47%. Further details on the calculation of the CPP emissions targets are 
provided by the U.S. Environmental Protection Agency 

(https://www.epa.gov/cleanpowerplan). These targets on carbon intensities ( ) are used 𝑇𝐴𝑅𝐺𝐶𝐼
𝑗

to establish the state emissions target in ERCOM (i.e. TARGj) via Eq. (S35).

𝑇𝐴𝑅𝐺𝑗 = ∑
𝑖

𝐺𝐸𝑁𝐶𝑈𝑅
𝑖,𝑗 (𝑇𝐴𝑅𝐺𝐶𝐼

𝑗 𝐶𝐼𝑖,𝑗)       ∀𝑗 (S35)

Here,  is the amount of electricity generated in 2012 with technology i in state j and CIi,j 𝐺𝐸𝑁𝐶𝑈𝑅
𝑖,𝑗

is the carbon intensity associated to that technology and state.
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Figure S1. State specific emission reduction targets established by the CPP for 2030 referred to 2012 
emissions levels. States are coloured according to the scale of emissions reduction targets imposed by 
the CPP. States labels are in compliance with ISO 3166-2 code.

1.2.2.2 Existing technologies capacity and generation
The existing capacities installed in the states along with the annual net generation rates 

(parameter  in Eq. (S35)) for year 2012 were sourced from the Official Energy Statistics 𝐺𝐸𝑁𝐶𝑈𝑅
𝑖,𝑗

of the U.S. Energy Information Administration (EIA)6. Pie charts in Figure S2 depict the state 
electricity generation mixes (Subplot S2a) as well as the state installed electricity capacity 
(Subplot S2b). As seen, the electricity generation portfolios vary greatly from state to state. 
Most of the electricity mixes rely on coal, natural gas and nuclear, which are the dominant 
energy sources of electricity. However, in the Northwest, hydropower has the highest share in 
the electricity mixes of Washington, Orlando, Idaho, Montana and South Dakota. In addition, 
wind power (onshore) plays an important role in the northern and central states. Geothermal 
power is implemented mainly in California and Nevada, while Maine uses large amounts of 
biomass. Electricity production from Solar PV (both at rural and rooftop levels) is rather low in 
several states, and the same happens with concentrated solar thermal in Arizona, California 
and Nevada.
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Figure S2. U.S. installed capacity and generation for 2012. Subplot S2a) depicts the installed capacity of 
each technology in each state in 2012 whereas subplot S2b) stands for the electricity generation. The 
size of the pie charts is proportional to the capacity installed and to the electricity generation of each 
state, respectively, whereas the slice colours denote the technology and the slice sizes represent the 
associated percentage share.

Figure S3 shows the global U.S. electricity generation portfolio and capacity for 2012. As can be 
observed, fossil fuels dominate the U.S. electricity portfolio. Almost 69% of the electricity in 
U.S. was generated from fossil coal and natural gas sources, while nuclear represents about 
19%. The share of renewables was 11.8%, with hydro power accounting for 7%. As observed, 
the share of coal and nuclear in terms of power generation is above their share in terms of 
installed capacity. This is because coal and nuclear technologies provide base load, while 
natural gas typically covers peak loads and solar and wind renewables are intermittent due to 
their dependence on climatic conditions.
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Figure S3. Global U.S. generation and installed capacity for 2012. Pie chart on the left (Subplot S3a) 
depicts the global U.S. power generation portfolio while pie chart on the right (Subplot S3b) depicts the 
global U.S. installed capacity. Slice colours represent the share of each technology according to the 
legend.

1.2.2.3 Geospatial and temporal definition: Load areas 
The U.S. power electricity generation is optimised for 2030, which is the CPP policy horizon. 
ERCOM is defined at the state level and on an annual basis. Following this approach, the U.S. is 
divided into 47 load areas corresponding to the states boundaries included in the CPP. 
Furthermore, we match electricity supply and demand on an annual basis. We consider that 
the aforementioned geospatial and temporal resolutions are accurate enough for the purposes 
of our study. In the real operability of the electricity system, however, load and supply need to 
be balanced on a finer scale. To account for this, we enforce the model to back up the 
installation of intermittent renewables by means of ancillary systems based on dispatchable 
technologies, which ensures the reliability of the whole electricity system.

The electricity load (i.e. annual electricity demand) for each state was estimated using the data 
published by the U.S. Energy Information Administration (EIA) on electricity retail sales by 
state, which is a good proxy of consumption rates6. These data were sourced for the baseline 
year (i.e. 2012) and forecasted to 2030 by applying a 0.8% average annual growth rate, as 
projected by the EIA7. The electricity power demand varies greatly across states (Figure S4), 
being Texas, California and Florida the states showing the highest electricity demands. 
Furthermore, we consider a demand satisfaction factor (i.e. parameter DSF) that is set at 1.05 
to ensure that the model can cover the electricity demand plus a reserve margin of 5%. This 
factor further reinforces the reliability of the system8.
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Figure S4. Projected annual electricity demands for each load area in 2030. States are coloured 
according to the scale of the projected electricity demand for 2030 expressed in TWh.

1.2.2.4 Transmissions lines 
The U.S. electricity transmission network consists of approximately 200,000 miles of high 
voltage lines that connect generators to distributors in order to transport the electricity to the 
costumers. Unfortunately, data on the specific location and capacity of all U.S. power lines is 
missing, as EIA publishes interactive maps of only major electric transmissions lines (>345 kV) 
in the U.S. territory (see http://www.eia.gov/state/maps.cfm). Considering the state spatial 
resolution, the model assumes that the available U.S. electricity grid connects every U.S. state 
with its neighbouring states, that is, with those states with which it shares boundaries. 
Therefore, we model every state as a nodal area connected to neighbouring nodal areas by 
transmission lines, as depicted in Figure S5. Moreover, the CPP enables Canadian imports as a 
compliance strategy, so international transmission lines between U.S. states and the bordering 
Canadian provinces are also considered. Line arcs in the transmission network represent 
distances between states (parameter DISTj,j’), as calculated with the great circle formula. 
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Figure S5. U.S. electricity potential transmission network considered in the study. Blue lines represent 
the transmissions lines whose ends are the nodes that correspond to the U.S. states. Red lines represent 
the international transmission lines with the Canadian provinces. Canadian provinces are labelled 
according to the ISO 3166-2 code.

1.2.2.5 Power losses during transmission and distribution
The EIA estimates that average annual transmission and distribution losses are roughly 6% of 
the total amount transmitted6. To capture such energy losses, we consider that 0.62% of the 
transmitted energy is lost every 100 km9. ERCOM models these losses via parameter TLF. 

1.2.2.6 Capacity factors of the electricity generation technologies
Capacity factors (parameter CFi,j) affect greatly the electricity generation and the LCOE. 
Differences in regional resources availability and plant operations lead to great variations of 
the capacity factor across the U.S. states. Average capacity factors for each technology in each 
state were calculated from historical data published by the EIA. These data cover the capacity 
installed and the electricity generated for period 1990-20136. Data gaps in states not deploying 
a given technology in that time period where covered using the average capacity factor of the 
technology among all the states. There are two exceptions to this rule: (i) states not deploying 
nuclear power in the baseline year show a capacity factor of zero, since installing additional 
nuclear facilities is not a CPP compliance option; and (ii) a capacity factor of 0.36 was 
employed for wind offshore in coasting states, as recommended by the EIA7, given that this 
technology is not deployed at all along U.S. in the baseline year. For biomass, we considered 
the categories “wood and derived fuel from wood” and “other biomass” available in the 
aforementioned source. Capacity factors for advanced coal and advanced combined cycle with 
carbon capture and storage (CCS) were assumed to be the same as those for conventional coal 
and natural gas, respectively. We also assumed that solar PV (both rural and rooftop scale) and 
solar thermal display the same capacity factor. Figure S6 shows the capacity factors. In general 
terms, we can observe that non-dispatchable technologies (i.e. those tied to an intermittent 
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resource) show lower capacity factors than firm technologies (i.e. those whose output can be 
varied at will to meet a certain demand).

Figure S6. Capacity factor for each technology in each state. States are coloured according to the each 
specific scale so that the darker the shade of the state, the higher the capacity factor.

1.2.2.7 Cost of electricity generation technologies 
The levelised cost of the electricity (LCOE) is (arguably) a convenient measure of the economic 
competiveness of the electricity generation technologies. Costs of electricity generation for 
each technology were determined from the average national LCOE for plants entering in 
service in 2020 following the Annual Energy Outlook 2015 developed by the EIA7 (see Table 
S1). This report provides capital and transmission lines cost along with fixed and variable 
operations and maintenance (O&M) costs. The LCOE represents the cost per kWh of building 
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and operating a plant over a given financial life (i.e. 30-year cost recovery period with a tax 
weighted average cost of capital of 6.1%). This parameter assumes a specific utilisation rate for 
each plant type (further details on specific assumptions are discussed in 
http://www.eia.gov/forecasts/aeo/index.cfm). 

Table S1 Average capital and transmission lines costs, and fixed and variable operation and 
maintenance (O&M) costs for each electricity generation technology (2012 US$/MWh)7. 

Capital and lines cost Fixed O&M cost Variable O&M cost
Coal 61.6 4.2 29.4
Natural Gas 15.6 1.7 57.8
Nuclear 71.2 11.8 12.2
Hydropower 72.7 3.9 7.0
Biomass 48.3 14.5 37.6
Geothermal 35.5 12.3 0
PV rural 113.9 11.4 0
Wind onshore 60.8 12.8 0
Wind offshore 174.4 22.5 0
Coal CCS 98.5 9.8 36.1
PV rooftop 113.9 11.4 0
Solar Thermal 196.6 42.1 0
Natural Gas CCS 31.3 4.2 64.7
These costs are region-specific due to local labour markets and differences in availability of 
energy sources. Hence, to capture such differences, costs were regionalised at the state level 
using Eqs. (S36-S38). These equations make use of the regional capacity factors (Figure S6) and 
state cost adjustment factors compiled by the U.S. Army Corps of Engineers10.

𝐶𝑂𝐶𝐴𝑃
𝑖,𝑗 = 𝐶𝑂𝐶𝐴𝑃𝐴𝑉𝐸

𝑖 𝜔𝑗[ 47

∑
𝑗'

1
𝐶𝐹𝑖,𝑗'

1
𝐶𝐹𝑖,𝑗]       ∀𝑖,𝑗 (S36)

𝐶𝑂𝐹𝐼𝑋
𝑖,𝑗 = 𝐶𝑂𝐹𝐼𝑋𝐴𝑉𝐸

𝑖 𝜔𝑗[ 47

∑
𝑗'

1
𝐶𝐹𝑖,𝑗'

1
𝐶𝐹𝑖,𝑗]       ∀𝑖,𝑗 (S37)

𝐶𝑂𝑉𝐴𝑅
𝑖,𝑗 = 𝐶𝑂𝑉𝐴𝑅𝐴𝑉𝐸

𝑖 𝜔𝑗[ 47

∑
𝑗'

1
𝐶𝐹𝑖,𝑗'

1
𝐶𝐹𝑖,𝑗]       ∀𝑖,𝑗 (S38)

In these equations, ,  and  are parameters denoting the regional 𝐶𝑂𝐶𝐴𝑃
𝑖,𝑗 𝐶𝑂𝐹𝐼𝑋

𝑖,𝑗 𝐶𝑂𝑉𝐴𝑅
𝑖,𝑗

capital/transmission lines cost, and fixed and variable O&M costs for each technology i in each 

state j (2012 US$/MWh), respectively; ,  and  denote the average 𝐶𝑂𝐶𝐴𝑃𝐴𝑉𝐸
𝑖 𝐶𝑂𝐹𝐼𝑋𝐴𝑉𝐸

𝑖 𝐶𝑂𝑉𝐴𝑅𝐴𝑉𝐸
𝑖

capital and transmission lines cost, and fixed and variable O&M costs for each electricity 

generation technology i, respectively (i.e. columns 2-4 in Table S1); and  denotes the cost 𝜔𝑗

adjustment factor for each state j, where 47 is the number of elements used in the 
regionalisation (i.e. the number of states).
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1.2.2.8 Electricity generation potential for each technology
The annual potential generation associated with every technology in each state (parameter 

 in ERCOM) is strongly related to the marginal abatement costs that ultimately drive 𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗

the optimisation results (i.e. optimal electricity mixes and electricity trades). The model 
considers free trade of fossil fuels between states. We assume that the potential for fossil fuel-
fired generation with coal and natural gas (both conventional and with CCS) is five times bigger 
than its generation in 2012. Regarding nuclear generation, potential levels are irrelevant, since 
the CPP does not consider new expansion as a compliance option. The potential for generation 
via renewables technologies is retrieved from the data published by the U.S. National 
Renewable Energy Laboratory (NREL)11. Furthermore, we assume that states can double their 
published biomass potential by trading resources between them. NREL estimates the technical 
renewable potential at the state-level based on renewable resources availability and quality, 
technical system performance, topographic limitations, and environmental, and land-use 
constraints (further details of the methodology and assumptions for estimating the 
renewables generation potential can be found in the report “U.S. Renewable Energy Technical 
Potentials: A GIS-Based Analysis”11 available online at 
http://www.nrel.gov/gis/re_potential.html). Figure S7 shows the annual potential generation 
in TWh/yr for each technology and state considered in ERCOM. 

Furthermore, global bounds (parameter  in ERCOM) are also imposed on the 𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂
𝑖

potential of technologies relying on energy sources that can be traded. Specifically, coal and 
coal CCS share a global upper bound given by coal-based generation limits in the baseline year. 
The same applies to natural gas w/o CCS. For biomass, we consider a global upper bound equal 
to the summation of all the states’ potential, as published by NREL.  
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Figure S7. Annual electricity generation potential. States are coloured according to their annual 
electricity generation potential expressed in TWh/yr. The darker the shade, the higher the potential.

1.2.2.9 Electricity imports from Canada
We assume that electricity imports from Canadian regions are generated with hydropower and 
are therefore zero emitting and dispatchable. Electricity import prices (parameter COCAN) can 
fluctuate significantly (e.g. from as little as US$25/MWh to as much as US$70/MWh) 12, but for 
simplicity we set a price of US$39/MWh according to historical data13. 

In 2014, the electricity imported from Canada represented 1.8% of U.S. electricity retail sales, 
which was almost 10% of the total Canadian generation. In ERCOM, we assume that the 
electricity imports from Canada cannot exceed 5% of the demand of the U.S. (parameter CTB), 
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which is in line with the expected growth estimated by the North American Electric Reliability 
Corporation (i.e. three times more compared to 2014 levels)14. 

1.2.2.10 Emission levels by technology: carbon intensity
The carbon intensity (parameter CIi,j, expressed in CO2 kg/MWh) for fossil fuel-fired power 
plants was sourced from the average regional performance rate included in Appendix 3 of the 
CPP final rule1. Such carbon intensities for coal and natural gas were calculated by the EPA as 
the average of the category-specific performance rates reported by unit levels or plant levels 
for 2012. Nuclear and renewables technologies are assumed to be zero emitting in the CPP. 
Regarding both coal and natural gas with CCS, we assume that they capture 90% of the flue gas 
CO2, thereby reducing absolute emissions by 90%15. Figure S8 shows the carbon intensities of 
coal and natural gas in each state expressed in kg CO2 per MWh. Note that carbon intensities 
from 2012 represent a conservative estimation that overlooks improvements in technology 
efficiency, which is one of the CPP building blocks.

Figure S8. Emission performance rates of coal and natural gas by state. States are coloured according 
to their carbon intensity (CO2 kg/MWh). The darker the shade, the higher carbon intensity.

1.2.2.11 System reliability: backup generation
High penetration of intermittent renewable power (i.e. wind and solar) can compromise the 
system reliability due to the variability and uncertainty of the sources (i.e. non dispatchable). 
To circumvent this issue, ancillary systems are installed to back-up the generation of 
intermittent renewable energies. However, the capacity of dispatchable technologies required 
to compensate their lack of firmness is still controversial, with very different values available in 
the literature (e.g. from as little as 15–20% of the intermittent capacity16,17 to as much as 50–
100%18). A value of 50% for the BUC parameter was therefore set in the ERCOM model. The 
physical interpretation for this is that each MW installed of an intermittent renewable 
technology requires the installation of additional 0.5 MW of firm technology to hedge supply 
in periods with unfavourable weather conditions.

1.3 Consumption-based allocation
Consumption-based carbon emissions and electricity generation costs are quantified by 
allocating emissions and costs to end users rather than to producers. At a global U.S. scale, the 
total consumption-based emissions (and cost) are equal to the production-based ones (recall 
that the imports from Canada are zero emitting). However, this does not happen on a regional 
basis due to the exchange of electricity between states. Allocation of emissions is still an open 
issue in the literature, where several methods were put forward to tackle this problem, 
particularly in the context of multi-product plants (i.e. how to allocate the total emissions of a 
plant among the products it manufactures19). As described in more detail next, here we 
allocate emissions and costs based on mass balances defined for every U.S. state. The 
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allocation method is outlined in Figure S9 by means of a simplified example consisting of three 
states trading electricity. The waterfall plot bellow shows the breakdown of the consumption-
based emissions calculation for state A. As seen, the consumption-based emissions 

corresponding to state A (CBEMA) are calculated from its production-based emissions ( ) ̅𝐸𝑀𝐴

plus the emissions embodied in the electricity imported from states B and C (red and green 
bars with blue contours respectively) minus the emissions embodied in the electricity exported 
from the state A to the neighbouring states (bars filled with blue colour); where the amount of 
emissions embodied in the trades are given by the product between the amount of electricity 

traded ( ) and the consumption-based carbon intensity (i.e. CO2 kg/MWh) of the 
̅𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗,𝑗'

supplier state ( ).𝐶𝐵𝐸𝑀𝑗'(𝐷𝐸𝑀𝑗'𝐷𝑆𝐹) ‒ 1

Figure S9. Illustration of the consumption-based allocation method. Three states (i.e. A, B and C) 
trading electricity are considered where arrows represent the emissions embodied in the electricity 
trades. The waterfall plot below denotes the breakdown of the consumption-based emissions 
calculation for state A. Length of the bars represents the amount of the emissions and each bar is filled 
according to the emitter state and contoured according to the receiver state.

1.3.1 Consumption-based emissions
To quantify the consumption-based emissions of a state in any optimal solution calculated by 
ERCOM, we derive the following balance on carbon emissions:

𝐶𝐵𝐸𝑀𝑗 = ̅𝐸𝑀𝑗 + ∑
𝑗' ∈ 𝑁𝑈𝑗

̅𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗,𝑗'

𝐶𝐵𝐸𝑀𝑗'

𝐷𝐸𝑀𝑗'𝐷𝑆𝐹
‒ ∑

𝑗' ∈ 𝑁𝑈𝑗

̅𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗',𝑗

𝐶𝐵𝐸𝑀𝑗

𝐷𝐸𝑀𝑗𝐷𝑆𝐹
∀𝑗 (S39)

Here,  are the consumption-based (footprint) emissions of state j, that is, the kg of CO2 𝐶𝐵𝐸𝑀𝑗

emitted to satisfy its electricity demand, while  are the optimal production-based ̅𝐸𝑀𝑗

emissions of state j (the ones calculated by ERCOM),  represents the optimal trade 
̅𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗,𝑗'

between states j and j’ (calculated also by ERCOM), DEMj denotes the demand of state j and 
DSF is the demand satisfaction factor. Note that imports from Canada are zero-carbon and 
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therefore are omitted from the balance. Hence, the equation states that the consumption-
based emissions of a state equal its production-based emissions plus the emissions embodied 
in the electricity imported by the state minus the emissions embodied in the electricity 
exported from the state to other neighbouring states. 

This equation is implicit in , as it requires the values of the consumption-based 𝐶𝐵𝐸𝑀𝑗

emissions of other states j’ (i.e. ), which may in turn depend on the consumption-based 𝐶𝐵𝐸𝑀𝑗'

emissions of the state for which the balance is defined. Therefore, Eq. (S39) leads to a system 
of linear equations that need to be solved simultaneously. After running ERCOM, the 

production-based emissions of every state ( ) and the inter-state flows ( ) become ̅𝐸𝑀𝑗
̅𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗,𝑗'

available. With this information at hand, we next build the system of linear equations in Eq. 
(S39) and solve it to obtain the values of CBEMj, which provide the consumption-based carbon 
emissions of every state.

1.3.2 Consumption-based costs
The cost of the electricity consumed by a state is calculated following a similar approach as 
before, as shown in Eq. (S40).

𝐶𝐵𝐶𝑂𝑆𝑇𝑗 = ̅𝐶𝑂𝑆𝑇𝑗 + ∑
𝑗' ∈ 𝑁𝑈𝑗

̅𝑇𝑅𝐷𝑂𝑅𝐼𝐺
𝑗,𝑗'

𝐶𝐵𝐶𝑂𝑆𝑇𝑗'

𝐷𝐸𝑀𝑗'𝐷𝑆𝐹
‒ ∑

𝑗' ∈ 𝑁𝑈𝑗

̅𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗',𝑗

𝐶𝐵𝐶𝑂𝑆𝑇𝑗

𝐷𝐸𝑀𝑗𝐷𝑆𝐹
∀𝑗 (S40)

This equation states that the cost of satisfying the electricity of a state is given by the cost of 
generating the electricity domestically plus the cost of the imports minus the cost of the 

exports. Here,  is the cost of satisfying the electricity demand of state j, that is, the 𝐶𝐵𝐶𝑂𝑆𝑇𝑗

global cost of satisfying its electricity demand, while  represents the optimal production-̅𝐶𝑂𝑆𝑇𝑗

based costs of state j.  denotes the optimal electricity transmitted from state j’ to j, 
̅𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗,𝑗'

DEMj is the final demand of state j and DSF is the demand satisfaction factor. Costs associated 
to imports from Canada are not explicitly defined in Eq. (S40), but rather accounted for by the 

parameter  (see Eq. (S30) in model ERCOM). Note that this allocation reflects the cost of ̅𝐶𝑂𝑆𝑇𝑗

generating electricity, but not the market price at which the electricity might be sold in the 
future (which will very likely lie above the former). Eq. (S40) defines also a system of linear 

equations that can be built once the optimal solution of ERCOM is identified (values of  ̅𝐶𝑂𝑆𝑇𝑗

and ). The solution of such system of equations therefore provides the value of 
̅𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗,𝑗'

CBCOSTj.

1.4 Sensitivity analysis
Some of the parameters in ERCOM are inherently uncertain. We perform a sensitivity analysis 
to understand how these uncertainties affect the outcome of the optimisation. To this end, the 
model is solved iteratively for different potential values of the uncertain parameters (i.e. 
scenarios), which are modelled using probability distributions. These values, each accounting 
for a different realisation of the uncertain parameter, are generated by applying sampling 
methods on the underlying probability distributions. After solving ERCOM for every scenario, 
we finally obtain a probability distribution of the model results (i.e. costs) that can be used to 
construct confidence intervals for the optimal U.S. electricity cost. In particular, we analyse the 
following cases:
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 Case 1: to identify the most critical uncertainties, we first solve the model by varying 

one single parameter at a time (e.g.  for all states j) while keeping the remaining ̃𝐷𝐸𝑀𝑗

parameters at their nominal (i.e. deterministic) values. We solve in total 9 NSC 
instances, where 9 refers to the number of uncertain parameters (see uncertain 
parameters in section 1.4.2; note that we explore the disaggregated LCOE parameters 
together, rather than separately) and NSC is the number of scenarios.

 Case 2: the model is solved considering all the uncertain parameters simultaneously 
(i.e. NSC times).

In the next section, we introduce the probability distributions used to model the uncertain 
parameters, whereas in section 1.4.2 we show how we fit each uncertain parameter to one of 
these distributions. Finally, in section 2.4 we discuss the results of the sensitivity analysis. 

1.4.1 Probabilistic distributions
The probabilistic distributions used in the analysis are next discussed (a generic random 
variable X is used for simplicity).

1.4.1.1 Geometric Brownian Motion
Strictly speaking, Geometric Brownian Motion (GBM) is not a probabilistic distribution but 
rather a continuous-time stochastic process which is used to model unpredictable events 
occurring during “deterministic“ trends20. Eq. (S41) describes the GBM differential equation 
applied to model a stochastic variable X:

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡 (S41)
where Xt represents the value of stochastic variable X in time instant t,  denotes the drift 𝜇

parameter,  is the standard deviation (or volatility) and  is the increment of the Wiener 𝜎 𝑑𝑊𝑡

process, modelled as a stochastic variable that follows a standard normal distribution. 
Therefore, the first term of the equation represents the expected value of the stochastic 
variable X in time t, whereas the second term adds the stochastic component to the 
prediction.

Assuming that the natural logarithm of the future realisation of X is normally distributed (i.e. 
log-normally distributed), the solution to Eq. (S41) is given by Eq. (S42).

𝑋𝑡 + ∆𝑡 = 𝑋𝑡[(𝜇 +
𝜎2

2 )∆𝑡 + (𝜎 ∆𝑡(𝑁(0,1)))] (S42)

Here,  is the time step. Therefore, this equation allows forecasting future values of X (i.e. ∆𝑡

Xt+T) according to historical data (i.e. Xt), once the drift parameter μ and the volatility σ have 
been determined.

1.4.1.2 Triangular distribution
A random variable X following a triangular distribution (i.e. X~T(a,b,c)) can take values 
between a lower limit a and an upper limit b, with mode (i.e. peak) c. The probability density 
function is then given by:
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𝑓(𝑥) = { 2(𝑥 ‒ 𝑎)
(𝑏 ‒ 𝑎)(𝑐 ‒ 𝑎)

𝑎 ≤ 𝑥 ≤ 𝑐

2(𝑏 ‒ 𝑥)
(𝑏 ‒ 𝑎)(𝑏 ‒ 𝑐)

𝑐 ≤ 𝑥 ≤ 𝑏� (S43)

Triangular distributions can be used to approximate normal distributions when data is scarce 
but the minimum (a) and maximum (b) values of the random variable along with its modal (i.e. 
nominal) value (c) are available. 

1.4.1.3 Uniform distribution
A random variable X following a uniform distribution (X~U(a,b)) has constant probability within 
the interval [a,b]:

𝑓(𝑥) = { 1
(𝑏 ‒ 𝑎)

𝑎 ≤ 𝑥 ≤ 𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒� (S44)

This is the simplest continuous probability distribution, since it only requires the extremes (a,b) 
of the support to be fully characterised. 

1.4.2 Uncertain parameters
The uncertain parameters in ERCOM and the probabilistic distributions used to describe them 
are given in Table S2. 

Table S2 Summary of probabilistic distributions used to describe uncertain parameters in ERCOM.

Uncertain 
parameter Probabilistic distribution Graphical 

representation
Characteristic 
parameters

̃𝐷𝐸𝑀𝑗 Geometric Brownian Motion μ, σ

̃𝐵𝑈𝐶
̃𝐶𝑂𝐶𝐴𝑁

̃𝐶𝑂𝐶𝐴𝑃
𝑖,𝑗

̃𝐶𝑂𝐹𝐼𝑋
𝑖,𝑗

̃𝐶𝑂𝑉𝐴𝑅
𝑖,𝑗

̃𝐶𝑇𝐵

Triangular a, b, c

̃𝐶𝐹𝑖,𝑗

�̃�𝐼𝑖,𝑗

̃𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗

̃𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂
𝑖,𝑗

Uniform a, b

Scenarios are generated from these distributions via Monte Carlo sampling, assuming in all the 
cases that the uncertain parameters are uncorrelated. More scenarios lead to better 
approximations but also to larger CPU times. In our case, 100 scenarios (i.e. NSC = 100) are 
enough to estimate the objective function for a confidence level γ = 95% (i.e. α = 0.05) 
according to Law and Kelton’s test21. Specifically, for simplicity we apply this test to the results 
(i.e. total U.S. cost) of Case 2 (considering all uncertainties simultaneously) and use the same 
number of scenarios in Case 1 as well. The test is applied as follows:
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1. We define a number of scenarios.
2. We solve model ERCOM for each of these scenarios, obtaining the electricity cost in 

each of them ( ).
̅𝐶𝑂𝑆𝑇𝑇𝑂𝑇

𝑠

3. We calculate the confidence interval half length, δ(NSC,α), via Eq. (S45).

𝛿(𝑁𝑆𝐶,𝛼) = 𝑡
𝑁𝑆𝐶 ‒ 1,

1 ‒ 𝛼
2

𝑉𝑎𝑟( ̅𝐶𝑂𝑆𝑇𝑇𝑂𝑇
𝑠 )

𝑁𝑆𝐶
(S45)

Here,  is the critical point of the t-distribution and  is the 
𝑡

𝑁𝑆𝐶 ‒ 1,
1 ‒ 𝛼

2 𝑉𝑎𝑟( ̅𝐶𝑂𝑆𝑇𝑇𝑂𝑇
𝑠 )

variance of the total cost in the scenarios.
4. We finally check that Eq. (S46) holds:

𝛿(𝑁𝑆𝐶,𝛼)

𝐸( ̅𝐶𝑂𝑆𝑇𝑇𝑂𝑇
𝑠 )

≤
𝛾

1 ‒ 𝛾 (S46)

Here,  is the expected value of the optimal total U.S. cost.𝐸( ̅𝐶𝑂𝑆𝑇𝑇𝑂𝑇
𝑠 )

If this condition does not hold, we increase the number of scenarios and go to step 1 
until the condition is satisfied.

The interested reader is referred to the original work by Law and Kelton21 for further details. 
We next describe in detail how we fit each parameter to the corresponding distribution. 
Electricity demand

Electricity demand is subject to several unforeseen aspects such as market volatility, 
technology improvements (e.g. development of electric cars), population growth and new 
policies, among others. Unlike other uncertain parameters considered “constant” over time, 
we forecast future demands using the GBM approach based on historical data trends. Annual 
electricity demands for each state were sourced from electricity retail sales (reported to be a 
good proxy for electricity demand) published by the EIA. Specifically, we use historical retail 
sales from period 1990-20126, where 2012 was used as the baseline year.

An average annual growth rate of 0.8% projected by the EIA7 was defined as drift parameter 

for each state ( ), while the volatility was determined using the historical data as follows 𝜇𝑗

Firstly, yearly returns for each state j (rj,t) are calculated for each two consecutive time periods 
via Eq. (S47), by considering a time step of one year.

𝑟𝑗,𝑡 =
𝐷𝐸𝑀𝑗,𝑡 + 1

𝐷𝐸𝑀𝑗,𝑡
∀𝑡 < 𝑇 (S47)

Then, the average of the yearly returns for each state ( ) is determined using Eq. (S48), �̅�𝑗

whereas the standard deviation of the yearly returns provides the state volatility ( ), as given 𝜎𝑗

by Eq. (S49).

 �̅�𝑗 =

∑
𝑡

𝑟𝑗,𝑡

2012 ‒ 1990
∀𝑗

(S48)

 𝜎𝑗 =
1

2012 ‒ 1990∑
𝑡

(𝑟𝑗,𝑡 ‒ �̅�𝑗)2
∀𝑗 (S49)
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Once drift and volatility have been determined, Eq. (S42) allows us to project demands from 
2012 onwards up to 2030 (year-per-year) by applying Monte Carlo sampling on the N(0,1) (see 
Fig. S10).

Figure S10. Scenarios for electricity demand in each state (MWh). States’ demands are forecasted using 
GBM from 2012 onwards by using historical data from 1990-2012. Each projection represents one 
scenario with the same probability of occurrence.

1.4.2.1 Coefficient for back up generation
As previously discussed, firm capacity can range from as little as 15–20% of the intermittent 
capacity16,17 to as much as 50–100%18. We use these values to fit a triangular distribution so 
that . Figure S11 provides a histogram based on the scenarios generated ̃𝐵𝑈𝐶~𝑇(0.15,1.00,0.50)

for this parameter.

Figure S11. Scenarios for the coefficient for back up generation (%). Scenarios for the BUC parameter 
are generated based on a triangular distribution.
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Note that a reliable representation of this parameter is of utmost importance, since it greatly 
influences the outcome of the optimisation. Higher values of this parameter will lead to mixes 
with less intermittent renewable technologies, whereas low values of BUC allow for larger 
shares of non-dispatchable resources.

1.4.2.2 Cost of electricity from Canada
The cost of the electricity purchased from Canada, , is subject to market fluctuations. We ̃𝐶𝑂𝐶𝐴𝑁

fit a triangular distribution where US$39/MWh is the nominal (i.e. peak) value13, and with a 
minimum value a = US$25/MWh and a maximum value b = US$70/MWh, which are both 
defined considering historical electricity price flutuations12. Therefore, the final distribution is 

 (see Figure S12). ̃𝐶𝑂𝐶𝐴𝑁~𝑇(25,70,39)

Figure S12. Scenarios for the cost of electricity imports from Canada (US$/MWh). Scenarios for the 

 parameter are generated based on a triangular distribution.𝐶𝑂𝐶𝐴𝑁

1.4.2.3 Costs of electricity generation technologies
Capital and transmission lines cost as well as fixed and variable operations and maintenance 
(O&M) costs are influenced by several external factors:

 Annualised capital costs ( ) are uncertain because so are the equipment costs ̃𝐶𝑂𝐶𝐴𝑃
𝑖,𝑗

(which may be influenced by economies of scale) as well as investments in lines 
connecting new installations with the existing grid.

 Fixed operation and maintenance costs ( ) are uncertain due to volatile fuel ̃𝐶𝑂𝐹𝐼𝑋
𝑖,𝑗

prices and labour costs.

 Variable costs ( ) are subject to unpredictable maintenance tasks and fuel prices, ̃𝐶𝑂𝑉𝐴𝑅
𝑖,𝑗

among others.

Nominal values for these parameters were obtained by regionalising the average U.S. costs for 

each technology (i.e. ,  and ) according to Eqs. (S36-S38), as 𝐶𝑂𝐶𝐴𝑃𝐴𝑉𝐸
𝑖 𝐶𝑂𝐹𝐼𝑋𝐴𝑉𝐸

𝑖 𝐶𝑂𝑉𝐴𝑅𝐴𝑉𝐸
𝑖

described in section 1.2.2.7. In the case of the uncertain parameters, we follow a three-step 
approach by which we first fit triangular distributions considering the average parameters, 
then generate scenarios from them, and finally regionalise the value of each parameter in each 
scenario. Specifically, in the first step, the average parameters for each technology i (i.e. 

,  and ) are fitted to three triangular distributions in which the peak ̃𝐶𝑂𝐶𝐴𝑃𝐴𝑉𝐸
𝑖 ̃𝐶𝑂𝐹𝐼𝑋𝐴𝑉𝐸

𝑖 ̃𝐶𝑂𝑉𝐴𝑅𝐴𝑉𝐸
𝑖

values c correspond to the nominal values (Table S1) and the extremes of the distributions (i.e. 
a and b) are obtained by disaggregating the nominal values on the same proportion as the 
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min-max bounds published7 for the total LCOE. In the second step, the scenarios are generated 
via sampling on the distributions of the 39 parameters (i.e. three parameters for each of the 13 
technologies considered). Finally, in step 3, we regionalise the values obtained for each 
parameter in each scenario by means of Eqs. (S36-S38). As an example, Figure S13 depicts 
histograms of the scenarios generated for the 13 technologies after applying the 
regionalisation step.

Figure S13. Scenarios for the disaggregated LCOE parameters (2012 US$/MWh). Scenarios for the LCOE 
parameter are generated based on a triangular distribution. Triangular distributions are first fit from 
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minimum, maximum and average 2012 values for the corresponding technologies, then a set of 
scenarios are generated for each parameter via Monte Carlo sampling and finally the value of each 
parameter in each scenario are regionalised to account for local differences.

1.4.2.4 Bound on imports from Canada
Electricity imports from Canada must lie below 5% of the total U.S. demand, which is 
consistent with the three-fold growth estimate that is expected (with respect to the current 
share of 1.8%14). However, this value is subject to new hydropower developments, grid 
reliability and new agreements and policies, among others. Therefore, we explore the 
influence of such bound by resorting to the stochastic parameter , which is assumed to ̃𝐶𝑇𝐵

follow a triangular distribution with a nominal value of 5% and with a support ranging from a 
minimum of 0% to a maximum of 7%. Figure S14 shows the scenarios generated for this 
parameter.

Figure S14. Scenarios for the upper bound on Canadian electricity imports (%). Scenarios for the CTB 
parameter is generated based on a triangular distribution.

1.4.2.5 Capacity factor
The capacity factor of a technology is subject to learning curves (in the case of immature 
technologies), efficiency improvements, unpredictable plant operation/maintenance as well as 
weather conditions (in the case of intermittent renewables), among others. We model this 

parameter as a stochastic ( ) variable following a uniform distribution for each i-j pair. ̃𝐶𝐹𝑖,𝑗

Specifically, we centre the distributions to the deterministic values and define the support (i.e. 
a and b in the uniform distribution) according to the standard deviation of historical data6. For 
states lacking data on some technologies, we use the average standard deviation among the 
different states, similarly as we did with the deterministic value of CFi,j (see section 1.2.2.6).
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Figure S15. Scenarios for the capacity factor of electricity generation technologies. Sample of the 
scenarios for the CFi,j parameter in three states are generated by fitting to a uniform distribution centred 
at the deterministic value and with a variation as given by the standard deviation of historical data. 

1.4.2.6 Carbon intensity
Carbon intensities depend on how plants are operated as well as on the composition of fuels, 

among other factors. An uncertain parameter, , is thus defined which follows a uniform �̃�𝐼𝑖,𝑗

distribution centred around the deterministic value and with a support providing a variation of 
±30%. Note that by generating independent scenarios for coal with and without CCS, we are 
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indeed modifying the % of CO2 captured in CCS (i.e. it will not always be 90%, as assumed for 
the deterministic case, but rather depend on the scenario). The same happens for natural gas 
w/o CCS. Figure S16 illustrates the scenarios generated for the carbon intensity for emitting 
technologies in some of the states. Non-emitting technologies are excluded from the 
sensitivity analysis, that is, we consider that CIi,j = 0 for all of them in any scenario.

Figure S16. Scenarios for the carbon intensity (CO2 kg/MWh). Sample of scenarios for the CIi,j 
parameter in three states generated based on a uniform distribution.

1.4.2.7 Generation potential

Uncertainty in the generation potential, , stems mainly from poor weather forecasting ̃𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗

(in the case of non-dispatchable renewables), discovering/depletion of fuel sources and 
technological development, among others. We approximate this stochastic parameter by 
fitting a uniform distribution assuming a support centred on the deterministic value with a 

variation of ±30%. Therefore, , which can be discretised in ̃𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗 ~𝑈(0.7𝐺𝐸𝑁𝑃𝑂𝑇

𝑖,𝑗 ,1.3𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗 )

scenarios as depicted in Figure S17.
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Figure S17. Scenarios for the generation potential (TWh/yr). Sample of scenarios for the  𝐺𝐸𝑁𝑃𝑂𝑇
𝑖,𝑗

parameter in three states generated based on a uniform distribution.

1.4.2.8 Global generation potential
Natural gas is expected to play a key role in the close future. Proved reserves and technically 
recoverable resources (for shale gas, tight gas and offshore natural gas) described in the 
Reference case of the Annual Energy Outlook 2016 published by the EIA22 suggest that current 
generation with natural gas could be doubled in oncoming years. In light of this, we model the 
global bound on the generation potential of natural gas as an uncertain parameter following a 
uniform distribution with a support between the baseline year generation and twice this 

amount (i.e. ). Figure S18 illustrates the ̃𝐺𝐸𝑁 𝑃𝑂𝑇𝐺𝐿𝑂
𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠~𝑈(𝐺𝐸𝑁 𝑃𝑂𝑇𝐺𝐿𝑂

𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠,2𝐺𝐸𝑁 𝑃𝑂𝑇𝐺𝐿𝑂
𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠)

scenarios generated for this parameter. Note that we only consider as uncertain the global 
potential for technology i = natural gas. The other potentials are kept at their deterministic 
values throughout the study.
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Figure S18. Scenarios for the global bound on the generation potential of natural gas (TWh/yr). 

Scenarios for the  parameter are generated based on a uniform distribution.𝐺𝐸𝑁 𝑃𝑂𝑇𝐺𝐿𝑂
𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠
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2 Supplementary results
We next provide some results omitted from the main manuscript due to space limitations. 
First, in section 2.1 we provide the U.S. geographical breakdown of the non-cooperative 
optimal solution (A). Then, in section 2.2, we further describe consumption and production-
based emissions/costs results. In section 2.2.1, we assess the emissions and costs embodied in 
the trade in the global U.S. partnership; while finally in section 2.2.2 we show the breakdown 
by state of emissions and costs (totals, carbon intensities and specific costs) according to both 
the production and consumption-based accountings.

2.1 Optimal non-cooperative solution (Solution A)

Figure S19. Geographical breakdown of the U.S. cost-optimal electricity system in solution A. The size 
of the pie charts is proportional to the electricity generation of each state (TWh/yr) whereas the slice 
colours represent the share of each technology. The global U.S. electricity generation portfolio for 2012 
and for solution A are depicted (bottom right) together with the associated LCOE.

Solution A is obtained by minimising the total cost of electricity generation and forcing states 
to comply with their CPP target individually (i.e. parameter CS is set to zero, so all binary 
variables are zero as well). Note that this solution covers the demand in 2030, but its cost is 
expressed in 2012 dollars. In this solution no cooperation (i.e. target sharing or electricity 
trade) is allowed, and therefore states can only reduce their emissions by switching to cleaner 
energy mixes. Solution A leads to a total U.S. cost of electricity generation 4% below the base 
line (i.e. 2012) while simultaneously the CO2 emissions are reduced almost double the CPP 
target (67% compared with the 35% required). Figure S19 shows the optimal electricity 
portfolio in each state without any form of cooperation among them. As can be observed, CPP 
targets can be met individually without increasing the U.S. LCOE, which is slightly lower than in 
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2012 (i.e. US$64.4/MWh compared to US$73.8/MWh). Broadly speaking, in solution A, coal-
fired power plants are almost phased out, while natural gas generation declines slightly and 
nuclear power is kept constant (as specified in the CPP). The share of renewables increases 
until representing a 47% of the total electricity demand. Economically competitive renewable 
technologies are deployed in many states. Namely, wind onshore increases substantially (from 
3% to 20% of the total power needs), while solar PV (both at rural and rooftop scale) reaches 
almost 16% (from almost zero levels in 2012). States deploying these technologies complete 
their portfolios with back-up firm technologies based on coal, natural gas, geothermal and 
natural gas with CCS. These technologies ensure the system reliability under intermittency of 
sources. Geothermal and biomass resources are exploited until accounting for almost 6% 
(each) of the total electricity generation. Geothermal is largely implemented in western states 
(e.g. California, Nevada, Idaho, Utah and Montana), while biomass is employed in south 
eastern states (e.g. Louisiana, Mississippi and Georgia) as well as in Iowa and Ohio, among 
others. Besides deploying renewable resources, some states reduce their emissions by 
replacing coal by natural gas (e.g. Pennsylvania, Michigan, New York, Alabama and New 
Hampshire), while others implement carbon capture and storage technologies in natural gas-
fired plants (e.g. Connecticut, Massachusetts, New Jersey, Oregon, Rhode Island and Virginia).

2.2 Further assessment of individual efforts: production vs 
consumption-based perspectives

2.2.1 Emissions and cost embodied in trade
Assessing the efforts every state makes in the cooperation only from a production-based 
perspective is arguably unfair since all the responsibility and the burden is allocated to 
electricity producers, which may be the states required to increase their generation for the 
sake of the overall gain (e.g. Oklahoma). Conversely, states displacing their facilities to other 
regions avoid the burden attributed to the generation of their electricity demand, leading to 
‘carbon leakage’. To shed further light on this, we consider the implications of adopting a 
consumption-based approach, which, unlike the territorial approach followed by CPP, assigns 
the responsibilities to consumer states, i.e. those that use rather than generate electricity. To 
this end, we quantify the CO2 emissions and costs embodied in the electricity flows between 
the states in solution B (Figure S20) following the allocation method explained in Section 1.3 in 
Supplementary Information. Note that the amount of carbon (or costs) embodied in the flows 
is driven not only by the volume of the trade but also by the carbon intensity (or LCOE in the 
case of costs) of the electricity sources (Figures S21 and S22). 

Allocation of emissions (Figure S20a) allows classifying states as net importers or net exporters 
of carbon emissions. The former release domestically less emissions than the amount emitted 
elsewhere in the U.S. to generate the electricity they consume. For the net exporters, this 
balance results in more emissions released locally than those associated with satisfying their 
own demand. Twenty nine states are net importers of emissions and 13 are net exporters, 
with four states not participating in electricity trade and one state importing only zero-carbon 
electricity from Canada. Within the first group, examples include Pennsylvania, Texas and New 
Jersey, while the exporters include Oklahoma, Florida, New York and Nevada. For most states 
that trade electricity, using the production and consumption perspectives results in a different 
level of emissions. In some cases, the mismatch between production and consumption 
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emissions is marginal (Figure S20a and Figure S21a), as in Wyoming (0.4 more in the 
consumption-based approach). In others, it can be significantly higher, as in Pennsylvania (45.5 
CO2 Mt/yr more) and in Oklahoma (70.7 CO2 Mt/yr less), evidencing that in some cases 
substantial emissions are traded between the states. Under the consumption-based approach, 
Oklahoma would be now released from any liability about the carbon embodied in its exports 
to the neighbouring states (i.e. final consumers), which would be held responsible for the 
emissions attributed to such trades. Therefore, the consumption-based perspective provides a 
different picture of the efforts made by each state. However, it still fails to capture the 
behaviour of the state as a producer, thereby neglecting the potential efforts undertaken to 
reduce its carbon intensity. For instance, Colorado would be attributed the responsibility for 
the emissions embodied in its imports from Oklahoma, but it would not be credited for 
switching to a lower carbon mix (from a coal-intensive mix to a mix based on geothermal and 
solar).  

Figure S20. Emissions and costs embodied in the electricity trade under full cooperation (solution B in 
Figure 1). Subplot S20a illustrates CO2 emissions and subplot S20b the costs embodied in trade. In the 
chord diagrams, the states are denoted by coloured circle arcs, where the arc length measures the total 
emissions (subplot S20a) and costs (subplot S20b) of imports and exports traded. Each trade is 
represented by a chord whose thickness is proportional to the magnitude of the trade (in CO2 Mt/yr in 
subplot S20a and in billion US$/yr in S20b). Chords are coloured according to the origin of the trade (i.e. 
according to exporter state). States whose aggregated export chords take up less than 50% of their arc 
length, are net importers of emissions (subplot S20a) or of costs (subplot S20b), whereas the opposite 
holds for net exporters (which are depicted with red labels).

Similar to the emissions, next we allocate the total cost of electricity among the U.S. states 
(Figure S20b) to find out if monetary flows could compensate for the efforts made when 
cooperating. This allocation is equivalent to assuming that the importer state purchases 
electricity at generation cost (i.e. LCOE) rather than at market price, which will arguably be 
higher. We use the LCOE because predicting future market electricity prices with accuracy is 
rather challenging due to their inherent volatility. This hampers the assessment of the future 
true economic contribution of each state in the cooperative solution. 
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The results show that in 32 states the cost of meeting their electricity demand is above the 
cost of their domestically generated electricity, while the opposite applies in 15 states. The 
mismatch in costs can be as low as in Wyoming (billion US$0.2/yr higher in the consumption 
perspective) or as high as in Ohio (billion US$10.5/yr more) and Oklahoma (billion US$25.1/yr 

less). Therefore, allocation of costs from a consumption-based perspective reveals a totally 
different situation from that shown in Figure 4. For instance, Oklahoma, previously a penalised 
state because its production-based electricity cost increased through cooperation, would now 
receive a revenue for its electricity exports (see Figure S20b) that would place the state slightly 
above the diagonal in Figure 4. Conversely, Ohio, which gained from the cooperation, would 
incur extra costs through electricity imported from Michigan, Indiana and Pennsylvania. The 
same rationale can explain the different compensatory movements arising in other states, yet 
under this accounting we are still disregarding the individual contribution that each state 
makes as a producer to reduce the overall U.S. cost of electricity.

As seen, the production and the consumption-based accountings are complementary23–25 and 
provide different insights into the contributions made by different states, to the extent that a 
single state may either benefit or be penalised, depending on the approach followed. At the 
U.S. level, the total amount of emissions embodied in the electricity trade represents 78% of 
the total electricity emissions released in the U.S., while the costs embodied in such trade 
reach 53% of the total cost of electricity generation in the country. Such large volumes of 
electricity flows emerge as a natural consequence of cooperation as trade favours the states 
with the most cost-effective resources. 

2.2.2 Production and consumption-based accountings: breakdown by state 
Cooperation among all U.S. states allows achieving the most cost-effectiveness mitigation; 
however, it entails an uneven distribution of efforts (both in terms of contribution to curb 
emissions and to reduce costs) which cannot be simply neglected. The exploitation of regions 
(i.e. states) with better abatement costs leads to two groups of states playing different roles: 
states acting as suppliers of electricity and states acting as recipients of electricity. The former 
increase the electricity generation by means of their low-cost and/or low-emitting 
technologies therefore suffering more from local burdens (but at the same time benefitting 
from the increase in the number of jobs, the associated tax share and enhanced energy 
security). The opposite holds for the latter group, whose members displace facilities abroad 
thereby avoiding the responsibility attributed to their electricity demand generation. 

Due to the asymmetric distribution of efforts, some states can be either harmed or benefitted 
when moving from an individualist strategy to the cooperative one, which compromises the 
engagement of all states into the cooperation. Therefore, quantifying the contribution each 
state makes for attaining mutual gains provides valuable insight on how to credit/penalise 
them. However, each individual contribution changes greatly depending on whether the 
responsibilities are allocated to producers or to consumers which makes it necessary to assess 
the efforts considering both perspectives.

Thus, we quantify both production and consumption-based emissions and costs following the 
allocation method explained in Section 1.3 in the Supplementary Information. The comparison 
between the traditional production-based approach and the consumption-based one provides 
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further insight and better understanding on how responsibilities should be allocated among 
the parties involved. To shed further transparency on this issue, Figure S21 displays the 
breakdown by state of total emissions and carbon intensities according to the production and 
consumption-based accountings, while Figure S22 shows the same comparison for the total 
and specific costs.

Figure S21. Comparison between production and consumption-based emissions in solution B by state. 
Subplot S21a displays the total emissions by state (in Mt CO2) while subplot S21b displays the carbon 
intensity by state (expressed in CO2 kg/MWh). Blue bars correspond to the production-based accounting 
while yellow bars correspond to the consumption-based one. Circumferences in subplot B depict 
average U.S. specific emissions following the same colour pattern as bars.

Total emissions (expressed in Mt CO2) from the electricity generation vary greatly among U.S. 
states, regardless of the accounting system. This significant spatial heterogeneity is not only 
observed in the electricity generation (i.e. suppliers and recipient states) but also in the 
composition of the electricity mixes (i.e. lower and higher carbon intensities). As seen, there is 
a clear mismatch between the traditional production-based accounting and the consumption-
based one at the state level, which evidences that substantial emissions are embodied in the 
electricity trades. The existence of this large discrepancy justifies the need of considering both 
perspectives in order to provide a more transparent picture of the “true” contributions made. 
Our results show that there are more states which are net importers of emissions (29) than net 
exporters of emissions (13). On a production basis, most of the U.S. emissions in solution B 
correspond to a few states, with only eight states (i.e. New York, Florida, Oklahoma, 
Massachusetts, Nevada, Connecticut, Indiana and Arkansas) accounting for more than 70% of 
the total U.S. emissions. However, under the consumption-based perspective, those states are 
held responsible for only 30% of the total U.S. emissions evidencing the need to analyse the 
results following both accounting systems. For instance, Oklahoma acts as a supplier state in 
the partnership due to its lower abatement cost, producing 79.2 Mt CO2 (third larger emitter in 
the U.S. partnership), while only 8.5 Mt CO2 corresponds to its consumption (ranked as 21st 
larger emitter). Conversely, Texas, which does not appear as a top emitter in the production-
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based accounting, almost doubles its emissions from a consumption-based perspective (i.e. 
27.4 Mt CO2 according to the production-based and up to 53.8 Mt CO2 in the consumption-
based), thus becoming the second largest emitter (according to the consumption-based 
accounting). Even in the case of New York, which is by far the larger emitter from both 
perspectives, production and consumption-based emissions differ significantly, evidencing that 
both approaches complement each other and together provide a deeper understanding of the 
real contribution made by states towards curbing CO2 emissions.

In subplot B we can see that carbon intensities (i.e. CO2 kg/MWh) also show great variations 
among states (regardless of the accounting system). These are due to the differences in carbon 
intensities among the states’ optimal electricity mixes. On a production basis, the largest 
carbon intensity corresponds to North Dakota, with a 55% coal-based electricity mix, followed 
by states deploying either coal-rich (e.g. Arkansas) or natural gas-rich (e.g. New Jersey, New 
York, Rhode Island or Massachusetts) portfolios. While most of these states are also among 
the top emitters on a consumption basis, some of them present significant differences 
between both accountings due to the emissions embodied in electricity trades. Production-
based carbon intensities are above consumption-based ones in eight states, while 26 states 
show higher carbon intensities in the consumption-based accounting and 13 states show the 
same carbon intensities in both accountings. Within the first group, we find states such as 
Arkansas, where the higher production-based emissions result from the combination of being 
a net exporter of electricity and deploying a high emitting electricity mix. Some other states 
within this group, like Wyoming, show lower carbon intensities as consumers because they 
import cleaner electricity with low embodied emissions. Within the second group (higher 
consumption-based carbon intensities), we find states such as Pennsylvania, which increase its 
consumption-based carbon intensity by importing electricity with high embodied emissions 
(e.g. importing large amount of electricity from the natural gas rich portfolio of New York). 
Finally in the last group (i.e. showing the same carbon intensities in both accountings), we find 
states which do not trade electricity at all (i.e. Maine, Montana and North Dakota); states 
which only export electricity (e.g. Florida, Indiana or Oklahoma); and states that import 
electricity with the same carbon intensity that the electricity they produce (e.g. Michigan only 
imports zero-emitting electricity from Canada and its mix is based on zero-emitting nuclear 
and hydropower). 
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Figure S22. Comparison between production and consumption-based costs in solution B by state. 
Subplot S22a displays the total cost by state (in billion US$) while subplot S22b displays the specific cost 
by state (expressed in US$/MWh). Blue bars correspond to the production-based accountings while 
yellow bars correspond to the consumption-based accounting. Circumferences in subplot B depict 
average U.S. specific costs following the same colour pattern as bars.

Allocation of costs by state (Figure S22a) shows that, regardless of whether a production or 
consumption-based accounting system is considered, there is a significant variability among 
states. This is due to the different volumes of net generation among states and also to the 
spatial heterogeneity of the electricity cost. Production-based and consumption-based total 
costs differ greatly due to the large volume of electricity traded which in turn is translated in 
large monetary flows between suppliers and consumers of electricity (note that we allocate 
the cost of producing the electricity, which will presumably be lower than the market price of 
the electricity transferred). Results in subplot S22a show that in 13 states, the cost of 
electricity generation is above the cost of covering their electricity demand, while in 31 states 
the opposite situation occurs. On a production basis, more than 53% of the total U.S. 
generation cost in solution B is assumed by only 8 states (i.e. Florida, Indiana, Illinois, 
Oklahoma, California, Nevada, New York and Texas). However, under a consumption-based 
perspective, this figure is reduced down to 33% which again evidences the need of considering 
both perspectives. Furthermore, for a single state, the mismatch between the total costs as a 
producer and as a consumer can be large, as for example in Oklahoma which presents 
production costs of US$28.2 billion while its consumption costs are US$3.0 billion (89.4% 
lower). 

The specific costs (i.e. US$/MWh) are more equally distributed than carbon intensities (Figure 
S21b). Carbon intensities vary greatly among states since emissions are far below the target 
and therefore they play no significant role in shaping the optimal solution. In contrast, specific 
costs are more similar across de U.S. territory. This happens because technologies are selected 
mainly according to their economic competiveness. Hence, the worst technologies (cost wise) 
are ruled out, with the ones being installed displaying similar average costs. 
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Results in subplot S22b show that the production-based specific costs lie above the 
consumption-based ones in 31 states (e.g. Michigan, Pennsylvania, Wisconsin, Alabama and 
Maryland), whereas the opposite holds in only four (e.g. specially Massachusetts and Rhode 
Island). Notably, most U.S. states reduce their specific costs in the consumption-based 
accounting, since the electricity they import is mainly produced in a few states with much 
lower specific costs. On the other hand, states where production-based unitary costs exceed 
consumption-based ones are not necessarily net exporters of electricity, because the 
monetary flows embodied in the electricity traded depend on both, the unitary costs and the 
volume of electricity exchanged (and the same applies to the net importers of electricity). For 
instance, Alabama is net importer of electricity (purchasing more electricity from the cost-
effective portfolio of Florida than it sells to Tennessee). Besides, its production-based costs 
exceed the consumption-based ones, a mismatch that stems from the large difference in 
specific generation costs between Alabama and Florida (i.e. US$94.0/MWh compared to 
US$36.3/MWh, respectively; a 61.2% lower in Florida). Furthermore, we can identify 12 states 
in which the production and the consumption-based specific costs are the same. These are 
states which either trade no electricity at all or only export it. Note that, unlike what happened 
with the emissions, here Michigan presents lower costs from a consumption-based accounting 
than from a production-based one, because its imports from Canada are cheaper than its 
domestic generation. 
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3 Sensitivity analysis
In this section we present the results of the sensitivity analysis providing confidence intervals 
for the benefits from cooperation and analysing the behaviour of the optimal cooperative 
solution B when uncertainties are considered into the ERCOM.

3.1 Sensitivity of the benefits from cooperation
In the main manuscript, we showed that the total U.S. cost of electricity generation can be 
reduced by 12% when all the states cooperate to curb CO2 emissions. In order to provide 
confidence intervals for such benefits, we next explore how this figure varies when considering 
uncertainties. To this end, we recalculate solutions A and B following the procedure described 
in section 1.4. For each of the uncertain parameters, we provide the probability distribution of 
the model results (Figure S23) and identify the worst and best case scenarios (i.e. minimum 
and maximum benefits, respectively), which define the interval where the real benefits should 
fall.

Figure S23. Sensitivity of the benefits derived from cooperation to the uncertain parameters. Each 
violin depicts the probability distribution of the difference between the U.S. cost in solutions B and A 
(expressed as a percentage) when uncertainty is considered in a given parameter(s) (indicated in the x 
axis). The width of the violin reflects the frequency (i.e. number of scenarios) of the solutions. 
Additionally, the benefit derived from cooperation in the deterministic case is also depicted for the sake 
of comparison.

We start by analysing the effects of single uncertainties (first nine violins in Figure S23), finding 
that there are four parameters whose uncertainty has little effect on the benefits of 
cooperation (i.e. similar savings as in the deterministic case are obtained regardless of the 
realisation of uncertainties). These are: (i) the carbon intensities (CI); (ii) the regional potential 
for electricity generation with each technology (GENPOT); (iii) the amount of electricity traded 
with Canada (CTB); and (iv) the unitary cost of this electricity (COCAN). These results can be 
explained as follows. Carbon intensities show little influence on savings because emissions fall 
below the CPP targets in the optimal solution. Hence, technologies are mostly implemented 
according to their relative economic competitiveness. On the other hand, changes in the state 
bounds on electricity generation impact very little on the results because these are in general 
high enough to not limit the installation of economically appealing technologies. Finally, 
parameters related to Canadian imports (i.e. bound on electricity imports and their unitary 
price) affect both solutions A and B in a similar manner, so the difference between both is 
always low. This is not surprising given that, firstly, deterministic solutions A and B already 
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showed very similar Canadian imports (i.e. 197 vs 201 MWh) and, secondly, because Canadian 
imports represent a little share of the total U.S. cost (around 3% in both cases).

There are two parameters, namely the capacity factor (CF) and the coefficient for back up 
generation requirements (BUC), which show slightly higher influence on the benefits derived 
from cooperation, yet these are still small (i.e. between 11.3% and 12.6%, for the changes in 
the CF, and between 11.7% and 12.5% for variations in the BUC). Therefore, while they affect 
more the individual solutions A and B, the difference between both solutions remains very 
much alike since they are changed in similar proportions.

Conversely, the following parameters have stronger impact on the benefits that can be 
achieved when cooperating: (i) the LCOE of each technology; (ii) the electricity demand; and 
(iii) the global potential generation bound. For instance, when uncertainties are realised on the 
LCOE, savings can vary from as little as 11.3% to as much as 13.6%. Although these numbers 
are close to the deterministic 12%, they entail significant variations in benefits: from US$1.8 
billion less savings to US$4.6 billion more. Note that scenarios for LCOE are not correlated, 
which means that costs for one technology can increase in one state but decrease in others. 
This penalises solution A more severely than B, since the latter can still resort to the most cost-
effective technologies/states and use trade to supply electricity to less favourable regions. 

Moreover, the DEM also shows a high influence on the savings that can be achieved, which 
range from 11.0% to 13.8% (i.e. from US$2.6 less to US$5.3 billion more than in the 
deterministic case). This is because the individualist strategy of solution A forces states with 
poor abatement costs to increase their generation to respond to a higher demand, thus 
severely worsening the U.S. costs. Conversely, in the cooperative solution B, regional 
advantages can still be exploited to supply economically appealing electricity thus cushioning 
the increase in the costs. Finally, the GENPOTGLO parameter shows the biggest influence among 
individual uncertainties, leading to benefits from cooperation lying always above those in the 
deterministic case (i.e. from 12% to a maximum value of 15.7%). This happens because in all 
the scenarios the global bound imposed on natural gas resources is relaxed (see section 
1.4.2.9). This allows supplying the resource even to states where it is scarcer, thus increasing 
the share of the low-cost gas technology throughout the U.S. territory.

Finally, we analyse the effect of all the uncertainties simultaneously (case All in Figure S23). 
We find that benefits from cooperation can range from as little as 11.5% to as much as 17.9%, 
that is, from US$1.2 billion less to US$16.8 billion more than in the deterministic case. The 
sensitivity analysis therefore shows that cooperation can bring significant benefits even when 
uncertainties are considered, that is, uncertainties do not change the main insight obtained 
from the analysis. The median of the results is significantly shifted (i.e. from 12% in the 
deterministic case to 14% when uncertainties are considered). This mismatch might be caused 
by the uncertainty level of the global bound on natural gas, for which a more conservative 
value was established in the deterministic case.

3.2 Sensitivity of the full cooperative solution (Solution B)
Cooperation (i.e. solution B) allows bringing the U.S. electricity cost down to US$248 billion 
and CO2 emissions down to 607 Mt CO2 when considering nominal parameters. In order to 
explore how these figures change in light of uncertainties, we next solve model B for the 



44

different scenarios and depict the resulting distributions of costs (subplot S24a) and emissions 
(subplot S24b) in Figure S24. 

Figure S24. Results from the sensitivity analysis of solution B. Violin plots depict the distribution of the 
U.S. cost (subplot S24a) and emissions (subplot S24b) obtained when uncertainty is considered in the 
parameter indicated in the x axis (recall that only the cost is optimised). The width of the violin reflects 
the frequency (i.e. number of scenarios) of the solutions. The figure shows also the cost and emissions 
obtained for the deterministic parameters in solutions A and B, along with the U.S. cost in the baseline 
year (2012) and the CPP emissions target.

We first analyse how individual uncertainties affect the cost and emissions under full 
cooperation (i.e. solution B). As can be observed in Figure S24, the parameters with the 
strongest impact on the model outcome (both in cost and emissions) are LCOE, GENPOTGLO, 
DEM and BUC. Particularly, GENPOTGLO shows the biggest influence among the individual 
uncertainties, revealing that the total U.S. cost could be reduced by 13.7% comparing to the 
determinist case (i.e. US$33.7 billion less). Furthermore, global emissions could increase by 
72.4%, as a result of enlarging the share of natural gas in the overall electricity mix (recall that 
scenarios on GENPOTGLO relax the global bound on natural gas-based resources). The total U.S. 
cost varies similarly when uncertainties in LCOE or DEM are considered (between -4.0% and 
+6.4%, and between -8.7% and +6.84%, respectively), yet the total emissions reflect a higher 
variation for the former (i.e. between -17.7% and +30.5%, compared to -6.5% and +9.1%). This 
can be explained as follows. In the deterministic solution B, emissions fall well below the CPP 
target (i.e. 70% reduction vs the 35% required). This occurs because the model decides to 
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install technologies based only on their economic competitiveness, and some of the most 
competitive ones happen to show in turn lower carbon intensities. In such context, the order 
of the economic competitiveness of two technologies showing similar costs but very different 
CO2 emissions can be switched when uncertainties are considered in the LCOE, thus 
significantly affecting the overall figure regarding the emissions. This does not happen when 
the uncertain parameter is the demand, since the economic competitiveness of the 
technologies remains the same. Finally, the uncertainty on the BUC affects more the emissions 
than the costs. Hence, the cost in solution B can vary ±4.5%, while the emissions can either be 
reduced or increased significantly (i.e. from almost 17.7% reduction to a 58.8% increase). 
Recall that this parameter provides the amount of firm technologies required as back up for 
each MWh of intermittent renewables installed. Taking into account that the carbon intensity 
of firm technologies is in average higher than that of intermittent resources (which are all 
zero-emitting), it is not surprising that different values of BUC have a strong impact on the 
overall cleanness of the U.S. portfolio. 

We then analyse all the uncertainties simultaneously (case All in Figure S24), noting that both 
costs and emissions show the most significant sensitivity among all the cases. As can be 
observed, the cost is lower than in the deterministic case in most scenarios (between -16.5% 
and +7.3%) while the opposite holds for the emissions (-12.6% and +89.6%), evidencing the 
high influence of GENPOTGLO in these results. Besides, in this case, as well as in general terms, 
the uncertainties affect more the distribution of emissions than that of the cost. This is due to 
the margin existing between emissions in the deterministic solution B and the target imposed 
by the CPP. 

4 Nomenclature

4.1.1 Indexes

4.1.2 Sets

4.1.3 Parameters 
BUC Backup capacity of dispatchable technologies required for every MW of non-

dispatchable intermittent technologies.
𝐶𝐴𝑃𝐶𝑈𝑅

𝑖,𝑗 Capacity installed with technology i in state j in the baseline year (i.e. 2012).
CFi,j Capacity factor of technology i in state j.
CIi,j Carbon intensity of technology i in state j.

𝐶𝑂𝐶𝐴𝑁 Unitary annual cost of electricity imports from Canada.
𝐶𝑂𝐶𝐴𝑃

𝑖,𝑗 Unitary annualised capital cost of technology i in state j.
𝐶𝑂𝐶𝐴𝑃𝐴𝑉𝐸

𝑖 U.S. average unitary annualised capital cost of technology i.

𝑖 Technologies.
𝑗 U.S. states.
𝑘 Canadian regions.

𝐶𝑇 Set of coal-based technologies i.
𝐼𝑅 Set of intermittent (i.e. non-dispatchable) technologies i.
𝑁𝐺𝑇 Set of natural gas-based technologies i.
𝑁𝐶𝑗 Set of Canadian regions k which are neighbours of state j.
𝑁𝑈𝑗 Set of states j’ which are neighbours of state j.
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𝐶𝑂𝐹𝐼𝑋
𝑖,𝑗 Unitary annual fixed operating costs of technology i in state j.

𝐶𝑂𝐹𝐼𝑋𝐴𝑉𝐸
𝑖 U.S. average annual fixed operating costs of technology i in state j.

𝐶𝑂𝑉𝐴𝑅
𝑖,𝑗 Unitary annual variable operating costs of technology i in state j.

𝐶𝑂𝑉𝐴𝑅𝐴𝑉𝐸
𝑖 U.S. average annual variable operating costs of technology i in state j.

̅𝐶𝑂𝑆𝑇𝑗 Annualised cost of electricity generation in state j in the optimal solution.
CS Number of states belonging to the partnership.
CTB Upper bound on total electricity imports from Canada.
DEMj Electricity demand of state j.
DISTj,j’ Distance between states j and j’.
DISTCANj,k Distance between state j and Canadian region k. 
DSF Demand satisfaction factor.

̅𝐸𝑀𝑗 Optimal production-based emissions of state j.
𝐺𝐸𝑁𝐶𝑈𝑅

𝑖,𝑗 Electricity generation with technology i in state j in the baseline year (i.e. 2012).
𝐺𝐸𝑁𝑃𝑂𝑇

𝑖,𝑗 Potential generation with technology i in state j.
𝐺𝐸𝑁𝑃𝑂𝑇𝐺𝐿𝑂

𝑖 Potential generation with technology i in U.S.
H Annual hours (i.e. 8760).
M1 Sufficiently large positive parameter.
M2 Sufficiently large positive parameter.
TARGj Target imposed by the CPP on the CO2 emissions of state j.

𝑇𝐴𝑅𝐺𝐶𝐼
𝑗 Target imposed by the CPP on the carbon intensity of state j.

TLF Trade losses factor (equivalent to 0.62% per 100 km).
̅𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗,𝑗' Electricity exported from state j’ to state j in the optimal solution. 
𝜔𝑗 Cost adjustment factor for state j.

4.1.4 Continuous variables

4.1.5 Binary variables

𝐶𝐴𝑃𝐵𝑈
𝑖,𝑗 Standard capacity installed of technology i in state j.

𝐶𝐴𝑃𝑆𝑇
𝑖,𝑗 Backup capacity installed of technology i in state j.

𝐶𝐵𝐶𝑂𝑆𝑇𝑗 Consumption-based annualised cost of electricity consumed in state j.
𝐶𝐵𝐸𝑀𝑗 Consumption-based CO2 emissions of state j.
𝐶𝑂𝑆𝑇𝑗 Production-based annualised cost of electricity generation in state j.
𝐶𝑂𝑆𝑇𝐶𝐴𝑁

𝑗 Annual cost of electricity imports from Canada.
𝐶𝑂𝑆𝑇𝐶𝐴𝑃

𝑗 Annualised capital costs of electricity generation in state j.
𝐶𝑂𝑆𝑇𝐹𝐼𝑋

𝑗 Annual fixed operating costs of electricity generation in state j.
𝐶𝑂𝑆𝑇𝑇𝑂𝑇 Total annualised cost of electricity generation in U.S.
𝐶𝑂𝑆𝑇𝑉𝐴𝑅

𝑗 Annual variable operating costs of electricity generation in state j.
𝐸𝑀𝑗 Production-based CO2 emissions of state j.
𝐺𝐸𝑁𝐵𝑈

𝑖,𝑗 Backup electricity generation with technology i in state j.
𝐺𝐸𝑁𝑆𝑇

𝑖,𝑗 Standard electricity generation with technology i in state j. 
𝑇𝑅𝐷𝐷𝐸𝑆𝑇

𝑗,𝑗' Electricity that state j imports from state j’ (after losses).
𝑇𝑅𝐷𝐿𝑂𝑆𝑆

𝑗,𝑗' Electricity losses in electricity trade between states j and j’.
𝑇𝑅𝐷𝑂𝑅𝐼𝐺

𝑗,𝑗' Electricity exported from state j’ to state j. 
𝑇𝑅𝐷𝐶𝐴𝑁𝐷𝐸𝑆𝑇

𝑗,𝑘 Electricity that state j imports from Canadian region k (after losses).
𝑇𝑅𝐷𝐶𝐴𝑁𝐿𝑂𝑆𝑆

𝑗,𝑘 Electricity losses in electricity trade between Canadian region k and state j.
𝑇𝑅𝐷𝐶𝐴𝑁𝑂𝑅𝐼𝐺

𝑗,𝑘 Electricity exported from Canadian region k to states j.
𝑌𝐸𝑀𝑗 Continuous variable that replaces the nonlinear product of the binary Yj by the 

emissions level EMj.

Yj Binary variable denoting whether state j belongs to a partnership (i.e. value 
equal to 1) or not (i.e. value equal to 0).
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