Supporting Information

Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors

Yan-Hua Liu,^a Jian-Long Xu,^{b*} Xu Gao,^b Yi-Lin Sun,^c Jing-Jing Lv,^b Su Shen,^a Lin-Sen Chen^{a*} and Sui-Dong Wang^{b*}

^aCollege of Physics, Optoelectronics and Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, Jiangsu 215006, China ^bInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China ^cInstitute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China

Address all correspondence to the author. *Email: xujianlong@suda.edu.cn; lschen@suda.edu.cn; wangsd@suda.edu.cn

Experimental Procedures for freestanding Co(OH)₂@Ni network electrode film

Electrochemical deposition of Co(OH)₂ nanosheets on Ni network electrode

The Co(OH)₂ nanosheets were electrochemical deposited onto the freestanding Ni network electrode by using a three-electrode configuration, consisting of the freestanding Ni network as the working electrode, platinum wire as the counter electrode and Ag/AgCl as the reference electrode at room temperature. The cleaned freestanding Ni network electrode was immersed in a 0.2 M CoSO₄ aqueous electrolyte solution. The electrochemical deposition process was conducted at room temperature over a voltage range from -1.2 to -0.8 V with a voltage scan rate of 20 mV/s for continuous 20 cycles. Then, the obtained freestanding Co(OH)₂@Ni network electrode film was thoroughly washed by deionized water to remove the residual electrolyte and dried in air ambient.

Electrochemical characterizations of freestanding Co(OH)₂@Ni network electrode film

All electrochemical measurements were performed using a CHI 660B electrochemical workstation (Shanghai CH Instrument Company, China). The tests were conducted in a standard three-electrode system with a 3M KOH electrolyte at room temperature. Here, the freestanding Co(OH)₂@Ni network electrode, a platinum wire, and an Ag/AgCl electrode were used as the working electrode, counter electrode, and reference electrode, respectively.

Fig. S1 Normalized variations in sheet resistance of the freestanding Ni network electrode as a function of the repetitive folding cycling times

Fig. S2 XPS survey of MnO₂ electrochemical deposited on freestanding Ni network electrode: Mn 2p XPS

Fig. S3 (a) Transmittance spectra (400-800 nm) of the freestanding Ni network electrode film without MnO_2 and loaded with MnO_2 electrochemical deposition at different deposition time from 2 to 10 min, (b) CV curves of the freestanding Ni network electrode film with MnO_2 electrochemical deposition at different deposition time ranging from 2 to 10 min.

Fig. S4 (a) Transmittance spectra (400-800 nm) and (b) CV curves of the freestanding $MnO_2@Ni$ network electrode film at a different deposition time of 6 min with various network periods ranging from 25 to 200 μ m, (c) Extracted optical transmittance value at 550 nm and area capacitance *versus* Ni network period properties.

Fig. S5 CV curves of the freestanding Ni network electrode film without MnO_2 and loaded with MnO_2 electrochemical deposition at a deposition time of 6 min in $1M Na_2SO_4$ electrolyte

Fig. S6 Electrochemical behaviors of the freestanding $Co(OH)_2@Ni$ network electrode film: (a) CV curves in a 3M KOH electrolyte with different scan rates, (b) Galvanostatic charge/discharge curves at various current densities ranging from 1.0 to 2.5 mA/cm².

Fig. S7 Photographs of the freestanding ultrathin transparent solid-state supercapacitor device utilizing the freestanding $MnO_2@Ni$ network electrode under different conditions: (a) flat, (b) 2-fold, (c) 4-fold, (d) crumple and (e) after release.

Electrode Materials	Freestanding	Thickness	Areal Capacitance	Transparency	Cycle Retention
		(μm)	(mF/cm²)	(%)	
graphene-graphene	no	>200	0.01	92.97	100% after 10000 cycles
quantum dots ⁴⁶					
RuO ₂ /PEDOT:PSS ⁴⁷	no	>200	0.84	80.0	93% after 6000 cycles
Graphene paper ³⁹	yes		3.3	59	95.4% after 20000 cycles
Ag-Au core-shell	no		0.2		100% after 500 cycles
Nanowire ³⁷					
PEDOT:PSS/Ag ⁴⁸	no	>200	4.52		83.7% after 5000 cycles
MnO ₂ @Ni (This work)	yes	20	10.6	80.7	96.3% after 10000 cycles

Table S1 A comparative table showing the thickness, transparency, areal capacitance and cycle retention of the flexible transparent supercapacitors utilizing other electrode materials and in this work